精英家教网 > 初中数学 > 题目详情
4.如图,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,且点D在AB边上,连接AE,
(1)求证:△ACE≌△BCD;
(2)求证:DE2=AD2+BD2

分析 (1)由于△ABC和△DCE都是等腰直角三角形,那么∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,结合等式性质易证∠1=∠2,那么利用SAS可证△ACD和△BCE.
(2)易求∠EAD=90°,再利用勾股定理可得AE2+AD2=DE2

解答 证明:∵△ABC和△DCE都是等腰直角三角形,
∴∠B=∠BAC=45°,AC=BC,CE=CD,∠ACB=∠DCE=90°,
∴∠ACB-∠ACE=∠DCE-∠ACE,
即∠ACE=∠BCD,
在△ACE和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACE=∠BCD}\\{CE=CD}\end{array}\right.$,
∴△ACE≌△BCD,
∴∠CAE=∠B=45°,AE=BD,
∴∠EAD=∠DAC+∠CAE=45°+45°=90°,
∴AE2+AD2=BD2+AD2=DE2
∴DE2=AD2+BD2

点评 本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列各数:3.141592,0.16,-π,0.1010010001…,$\frac{5}{6}$,$\root{3}{5}$,$\sqrt{8}$是无理数的有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图所示,在△ABC中,F,E分别为AB,BC的中点,G,H是AC的三等分点,EH,FG的延长线交于点D,连接AD,DC.
求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,E是矩形ABCD边AD上一点,以DE为直径向矩形内部作半圆O,AB=4$\sqrt{3}$,OD=2,点G在矩形内部,且∠GCB=30°,GC=2$\sqrt{3}$,过半圆弧(含点D,E)上动点P作PF⊥AB于点F.当△PFG是等边三角形时,PF的长是4或6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面的材料
已知三次方程x3+px2+qx+m=0有整数解t,其中p,q,m为整数.
将t代入方程有:t3+pt2+qt+m=0,移项并整理得:m=t×(-t2-pt-q),由于-t2-pt-q与m及t都是整数,所以m是t的倍数.
根据上面回答下列问题
(1)根据上面的推理过程,说明了系数为整数的三次方程x3+px2+qx+m=0的整数解只可能是m的因数(用文字描述)
(2)方程x3-2x2-4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.
(3)解关于x的方程x3+4x2+3x-2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知$\sqrt{15+{x}^{2}}$-$\sqrt{19-{x}^{2}}$=2,求$\sqrt{19-{x}^{2}}$+2$\sqrt{15+{x}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图.在?ABCD中,点E、F分别在DC、AB上,DE=BF,直线EF分别与AD、CB的延长线相交于点G、H.求证:AC、GH互相平分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.化简或求值
(1)若|a|=4,|b|=7,若ab>0,$\sqrt{(a-b)^{2}}$=b-a,求a-2b+1的值.
(2)当代数式100-(x-1)2有最大值时,求代数式-3(x-5)-(2x+7)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如果□×3a=-3a2b,则“□”内应填的代数式是(  )
A.-abB.-3abC.aD.-3a

查看答案和解析>>

同步练习册答案