【题目】已知等边△ABC的边长为4cm,点P,Q分别从B,C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;
点Q沿CA,AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s),
(1)如图(1),当x为何值时,PQ∥AB;
(2)如图(2),若PQ⊥AC,求x;
(3)如图(3),当点Q在AB上运动时,PQ与△ABC的高AD交于点O,OQ与OP是否总是相等?请说明理由.
【答案】
(1)解:∵∠C=60°,
∴当PC=CQ时,△PQC为等边三角形,
于是∠QPC=60°=∠B,
从而PQ∥AB,
∵PC=4﹣x,CQ=2x,
由4﹣x=2x,
解得:x= ,
∴当x= 时,PQ∥AB
(2)解:∵PQ⊥AC,∠C=60°,
∴∠QPC=30°,
∴CQ= PC,
即2x= (4﹣x),
解得:x=
(3)解:OQ=PO,理由如下:
作QH⊥AD于H,如图(3),
∵AD⊥BC,
∴∠QAH=30°,BD= BC=2,
∴QH= AQ= (2x﹣4)=x﹣2,
∵DP=BP﹣BD=x﹣2,
∴QH=DP,
在△OQH和△OPD中,
,
∴△OQH≌△OPD(AAS),
∴OQ=OP.
【解析】(1)可从结论入手,若PQ∥AB,可得出△PQC为等边三角形,PC=4﹣x=CQ=2x,进而求出x;(2)利用直角三角形中30度角的性质,得出CQ= PC,求出x;(3)通过Q点作垂线,利用x的代数式表示QH=DP,构造△OQH≌△OPD,进而OQ=OP.
科目:初中数学 来源: 题型:
【题目】若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为( )
A. 0<(3x+7)﹣5(x﹣1)≤5 B. 0<(3x+7)﹣5(x﹣1)<5
C. 0≤(3x+7)﹣5(x﹣1)<5 D. 0≤(3x+7)﹣5(x﹣1)≤5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接GB,EF,求证:GB∥EF;
(3)若AE=1,EB=2,求DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是( )
A. (3,2) B. (3,﹣2) C. (﹣3,2) D. (﹣3,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.
(1)在图中画出四边形AB′C′D′;
(2)填空:△AC′D′是 三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com