精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,PG为BC边的垂直平分线.且∠PBC=
12
∠A,BP的延长线交AC于点D,CP的延长线交AB于点E.求证:BE=CD.
分析:作BF⊥CE于F点,CM⊥BD于M点.证明Rt△BEF≌Rt△CDM.易证Rt△PBF≌Rt△PCM,得到BF=CM;由于∠A=∠BPE,在四边形ADPE中,根据内角和定理可得∠BEF=∠CDM,所以Rt△BEF≌Rt△CDM.得证.
解答:证明:证明:作BF⊥CE于F点,CM⊥BD于M点,
则∠PFB=∠PMC=90°.
∵PG是BC的垂直平分线,
∴PB=PC.
在△PBF和△PCM中,
∠PFB=∠PMC 
∠BPF=∠CPM 
PB=PC 

∴△PBF≌△PCM(AAS),
∴BF=CM;
∵PB=PC,
∴∠PBC=∠PCB=
1
2
∠BPE.
∵∠PBC=
1
2
∠A,
∴∠A=∠BPE.
∴∠EPD+∠BPE=∠EPD+∠A=180°,
∴∠AEP+∠ADP=180°.
又∠AEP=∠BEF,∠ADP+∠CDM=180°,
∴∠BEF=∠CDM.
在△BEF和△CDM中,
∠BEF=∠CDM 
∠BFE=∠CMD 
BF=CM 

∴△BEF≌△CDM(AAS).
∴BE=CD.
点评:此题考查了线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,注意构造全等三角形是关键,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案