精英家教网 > 初中数学 > 题目详情

【题目】黑蚂蚁沿着大半圆从A地爬到B地,白蚂蚁沿着两个小半圆弧路线也从A地爬到B地.它们同时从A地出发,让人奇怪的是,两只蚂蚁同时爬到B地.假设ABa

1)请你帮忙裁决,两只蚂蚁谁爬得快?

2)两只蚂蚁对你的裁决很不满意,决定到图2中的比赛场地再比一次,依然黑蚂蚁沿着大半圆爬,白蚂蚁沿着小半圆爬,同时从A地出发,那么请问哪只蚂蚁先爬到B地?说明理由.

【答案】1)两只蚂蚁爬的一样快;(2)两只蚂蚁同时到达,理由详见解析.

【解析】

1)黑蚂蚁的爬行路线是半个大圆,长度为大圆周长一半,白蚂蚁是一个小圆的周长;

2)黑蚂蚁的爬行路线是半个大圆,长度为大圆周长一半,白蚂蚁是两个小圆的周长.

解:(1)黑蚂蚁爬行路程:πa;白蚂蚁的爬行路程:πa

∴两只蚂蚁爬的一样快;

2)两只蚂蚁同时到达.

理由如下:

黑蚂蚁的爬行路程:πa;白蚂蚁的爬行路程:2×π×πa

∴两只蚂蚁同时到达.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).

运行区间

成人票价(元/张)

学生票价(元/张)

出发站

终点站

一等座

二等座

二等座

南靖

厦门

26

22

16

若师生均购买二等座票,则共需1020元.

1)参加活动的教师和学生各有多少人?

2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.

①求y关于x的函数关系式;

②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtACB中,∠ACB=90°,点DAB的中点,点ECD的中点,过点CCFABAE的延长线于点F

1)求证:△ADE≌△FCE

2)若∠DCF=120°,DE=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动,为了了解学生对这四种活动的喜爱情况,学校随机调查了该校名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.

(1)=________=_________

(2)请补全图中的条形图;

(3)在抽查的名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅),现将喜爱打乒乓球的同学平均分成两组进行训练,且女生每组分两人,求小红、小梅能分在同一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上AB两点表示的数分别为ab,且ab满足|a2|(b8)20,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0

(1) 线段AB的中点表示的数为___________

用含t的代数式表示:t秒后,点P表示的数为___________

(2) 求当t为何值时,PQAB

(3) 若点MPA的中点,点NPB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABCRtABD中,ACBD相交于点G,过点ACB的延长线于点E,过点BDA的延长线于点FAEBF相交于点H

1)证明:ΔABD≌△BAC

2)证明:四边形AHBG是菱形.

3)若AB=BC,证明四边形AHBG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x2+bx+c经过点(2,-3)和(4,5)。

(1)求抛物线的表达式及顶点坐标;

(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;

(3)在(2)的条件下,当-2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°AB=AC,点EAC上(且不与点AC重合),在△ABC的外部作△CED,使∠CED=90°DE=CE,连接AD,分别以ABAD为邻边作平行四边形ABFD,连接AF

1)请直接写出线段AFAE的数量关系

2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图,连接AE,请判断线段AFAE的数量关系,并证明你的结论;

3)在图的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图写出证明过程;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=3x与反比例函数y=k≠0)的图象交于A1m)和点B

1)求mk的值,并直接写出点B的坐标;

2)过点Pt0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=k≠0)的图象于点EF

t=时,求线段EF的长;

0EF≤8,请根据图象直接写出t的取值范围.

查看答案和解析>>

同步练习册答案