精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,线段OQ所扫过过的面积为( )

A.
B.
C.
D.

【答案】C
【解析】解:∵PM⊥AB于点M,PN⊥CD于点N,
∴四边形ONPM是矩形,
又∵点Q为MN的中点,
∴点Q为OP的中点,
则OQ=1,
点Q走过的路径长= =
∴线段OQ所扫过过的面积= × ×1=
故选C.
【考点精析】根据题目的已知条件,利用图形的旋转的相关知识可以得到问题的答案,需要掌握每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC的顶点B(0,2),A在x轴负半轴上、Cy轴负半轴上.

(1)写出A、C两点的坐标;

(2)△ABC的面积和周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上一点,∠BOC=120°OD平分∠AOC

(1)求∠COD的度数.

请你补全下列解题过程.

∵点O为直线AB上一点,

∴∠AOB=_____

∵∠BOC =120°

∴∠AOC=______

OD 平分∠AOC

∴∠COD=AOC( )

∴∠COD=________

(2)E是直线AB外一点,满足∠COE:∠BOE=41直接写出∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1先化简,再求值 xx1+2xx+1)﹣(3x1)(2x5),其中 x=2

2)解方程(3x2)(2x3=6x+5)(x1+15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC=90°,AB=2,BC=4,现将△ABC绕顶点B顺时针方向旋转△A′BC′的位置,此时A′C′与BC的交点D是BC的中点,则线段C′D的长度是(
A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDAC DEFAC FAMD=AGF1=2=35°

1)求∠GFC的度数

2)求证:DMBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A在数轴上对应的数为B对应的数为满足

(1)线段AB的长为________

(2)C在数轴上对应的数为10,在数轴上是否存在点D,使得DA+DB=DC?若存在,求出点D对应的数;若不存在,说明理由。

(3)动点P从点A出发,以每秒6个单位长度的速度沿数轴向左均速运动;动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左移动;动点M从点A出发,以每秒3个单位长度的速度沿数轴向左均速移动,PQM同时出发,设运动时间为,,探究QPQAQM三条线段之间的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案