精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠ABC=90°,AB=2,BC=4,现将△ABC绕顶点B顺时针方向旋转△A′BC′的位置,此时A′C′与BC的交点D是BC的中点,则线段C′D的长度是(
A.
B.
C.
D.2

【答案】B
【解析】解:过点B作BM⊥A′C′,交A′C′于点M,如图所示:
∵∠ABC=90°,AB=2,BC=4,
∴AC= = =2 ,cosA= = =
由题意得:∠A′=∠A,A′B=AB=2,A′C′=AC=2
∵点D为BC的中点,
∴BD= BC=2,BD=A′B,而BM⊥A′C′,
∴A′M=DM,
∵cosA′=cosA,且cosA′=
∴A′M= ×2=
∴C'D=A'C'﹣2A'M=2 ﹣2× =
所以答案是:B.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:( )÷ ,其中x的值从不等式组 的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于数轴上的点PQ,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P到点Qd追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Qd追随值为d[PQ]=3

问题解决:

(1)MN都在数轴上,点M表示的数是1,且点N到点Md追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示)

(2)如图,点C表示的数是1,在数轴上有两个动点AB都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0)

①当b=4时,问t为何值时,点A到点Bd追随值d[AB]=2

②若0<t≤3时,点A到点Bd追随值d[AB]≤6,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小敏在测量学校一幢教学楼AB的高度时,她先在点C测得教学楼的顶部A的仰角为30°,然后向教学楼前进12米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼AB的高度.
(结果精确到0.1米,参考数据: ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为2,AB,CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A,B,C,D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,线段OQ所扫过过的面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为_______

(2)(4xy)2=9(4x+y)2=169,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:我们都知道,

于是,-2x2+40x+5

=-2(x2-20x)+5

=-2(x2-20x+100)+200+5

=-2(x-10)2+205

又因为,所以

所以,-2x2+40x+5有最大值205.

如图,某农户准备用长34米的铁栅栏围成一边靠墙的长方形羊圈ABCD和一个边长为1米的正方形狗屋CEFG.设AB=x.

(1)请用含x的代数式表示BC的长(直接写答案)

(2)设山羊活动范围即图中阴影部分的面积为S,试用含x的代数式表示S,并计算当x=5时S的值;

(3)试求出山羊活动范围面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形DEFG都是正方形,点E,G分别在AD,CD上,连接AF,BF,CF
(1)求证:AF=CF;
(2)若∠BAF=35°,求∠BFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

同步练习册答案