【题目】在△ABC中,AB=20cm,BC=16cm,点D为线段AB的中点,动点P以2cm/s的速度从B点出发在射线BC上运动,同时点Q以a cm/s(a>0且a≠2)的速度从C点出发在线段CA上运动,设运动时间为x秒.
(1)若AB=AC,P在线段BC上,求当a为何值时,能够使△BPD和△CQP全等?
(2)若∠B=60°,求出发几秒后,△BDP为直角三角形?
(3)若∠C=70°,当∠CPQ的度数为多少时,△CPQ为等腰三角形?(请直接写出答案,不必写出过程).
【答案】(1)cm/s;(2)当P出发2.5秒或10秒后,△BPD为直角三角形;(3)当△CPQ为等腰三角形时,∠CPQ的度数为35°,40°,55°,70°.
【解析】
试题分析:(1)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
(2)分两种情况;①当∠BPD=90°时,由∠B=60°,得到∠BDP=30°,求得2BP=BD=10,求出x=2.5;②当∠BDP=90°时,根据三角形的内角和得到∠BPD=30°,求出x=10;即可得到当P出发2.5秒或10秒后,△BPD为直角三角形;
(3)分点P在边BC上或点P在边BC的延长线上,△CPQ为等腰三角形,根据等腰三角形的性质和三角形的内角和即可得到结论.
解:(1)∵AB=AC,
∴∠B=∠C,
∵AB=20cm,D是AB的中点,
∴BD=10cm,
∵点Q的速度与点P的速度不同,
∴BP≠CQ,
要使△BPD和△CQP全等,
则BP=CP=8cm CQ=BD=10cm,
∴x=秒,
∴a==cm/s;
(2)①当∠BPD=90°时,
∵∠B=60°,∴∠BDP=30°,
∴2BP=BD=10,
∴BP=5,
即2x=5,
∴x=2.5;
②当∠BDP=90°时,
∵∠B=60°,
∴∠BPD=30°,
∴BP=2BD=20,
即2x=20,
∴x=10;
∴当P出发2.5秒或10秒后,△BPD为直角三角形;
(3)点P在边BC上,△CPQ为等腰三角形,
①当PQ=CQ,∵∠C=70°,
∴∠CPQ=∠C=70°,
②当PQ=PC,∵∠C=70°,
∴∠PQC=∠C=70°,
∴∠CPQ=180°﹣2×70°=40°,
③当PC=CQ,∵∠C=70°,
∴∠CPQ=∠CQP==55°,
点P在边BC的延长线上,△CPQ为等腰三角形,
∵∠ACB=70°,∴∠ACP=110°,
∵PC=CQ,
∴∠CPQ=∠CQP==35°,
综上所述:当△CPQ为等腰三角形时,∠CPQ的度数为35°,40°,55°,70°.
科目:初中数学 来源: 题型:
【题目】一只不透明的口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为.
(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春节将至,某移动公司计划推出两种新的计费方式,如下表所示:
请解决以下两个问题:(通话时间为正整数)
(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?
(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点
A(1,-4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.
(1)求直线AB的解析式;
(2)求抛物线的解析式;
(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种铂金饰品在甲、乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.
(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x的代数式表示);
(2)李阿姨要买一条重量10克的此中铂金饰品,到哪个商店购买最合算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com