【题目】如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.
(1)求证:AC∥BD;
(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);
(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.
(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)
【答案】(1)证明参见解析;(2) 61.9°;(3) 小红的连衣裙会拖落到地面.理由参见解析.
【解析】
试题分析:(1)根据等角对等边和对顶角相等得出∠OAC=∠OCA=(180-∠AOC)和∠OBD=∠ODB=(180-∠BOD),∠AOC=∠BOD进而利用平行线的判定得出即可;或利用三角形相似和平行线判定可得出结论;(2)首先过点O作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.
试题解析:(1)方法一:∵AB、CD相交于点O,∴∠AOC=∠BOD,∵OA=OC,∴∠OAC=∠OCA=(180-∠AOC),同理可证:∠OBD=∠ODB=(180-∠BOD),∴∠OAC=∠OBD,∴AC∥BD;方法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴,又∵∠AOC=∠BOD,∴△AOC∽△BOD, ∴∠OAC=∠OBD;∴AC∥BD;(2)在△OEF中,OE=OF=34cm,EF=32cm;过点O作OM⊥EF于点M,则EM=16cm;∴cos∠OEF=
0.471,用科学计算器求得∠OEF=61.9°;(3)方法一:小红的连衣裙会拖落到地面;在Rt△OEM中,OM== =30cm,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴,AH=cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.方法二:小红的连衣裙会拖落到地面;同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;过点A作AH⊥BD于点H,在Rt△ABH中sin∠ABD=,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.
科目:初中数学 来源: 题型:
【题目】我们规定一种新运算“★”,其意义为a★b=a2-ab-5,如2★1=22-2×1-5=-3.则(-4)★(-2)的值为( )
A. 3 B. -3 C. -13 D. -29
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边BC、CD上的点, =,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.
(1)若正方形的边长为4,则EG等于 ;
(2)求证:△ECF∽△FDA;
(3)比较∠EAB与∠EAF的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
【初步运用】
如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
【灵活运用】
如图③,在△ABC中, ∠A=90°,D为BC中点, DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com