精英家教网 > 初中数学 > 题目详情

【题目】为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.

(1)m= %,这次共抽取了 名学生进行调查;并补全条形图;

(2)请你估计该校约有 名学生喜爱打篮球;

(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?

【答案】(1)20;50;(2)360;(3).

【解析】

试题分析:(1)首先由条形图与扇形图可求得m=100%-14%-8%-24%-34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50;

(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;

(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.

试题解析:(1)m=100%-14%-8%-24%-34%=20%;

∵跳绳的人数有4人,占的百分比为8%,

∴4÷8%=50;

如图所示;50×20%=10(人).

(2)1500×24%=360;

(3)列表如下:

男1

男2

男3

男1

男2,男1

男3,男1

女,男1

男2

男1,男2

男3,男2

女,男2

男3

男1,男3

男2,男3

女,男3

男1,女

男2,女

男3,女

∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.

∴抽到一男一女的概率P=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,BC3AC4,沿CD折叠,使点B落在CA边上的B′处,展开后,再沿BE折叠,使点C落在BA边上的C′处,CDBE交于点F

1)求AC′的长度;

2)求CE的长度;

3)比较四边形ECDF与△BCF面积的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4分)如图,抛物线的对称轴是.且过点(0),有下列结论:abc0a﹣2b+4c=025a﹣10b+4c=03b+2c0a﹣b≥mam﹣b);其中所有正确的结论是 .(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,复兴一号水稻的实验田是边长为m米的正方形去掉一个边长为n米(mn)正方形蓄水池后余下的部分,复兴二号水稻的试验田是边长为(m-n)米的正方形,两块试验田的水稻都收获了a千克.

1)哪种水稻的单位面积产量高?为什么?

2)高的单位面积产量比低的单位面积产量高多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出ABC向上平移6个单位得到的A1B1C1

(2)以点C为位似中心,在网格中画出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比为2:1,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数的图像交于A(2,4),B(-4,n)两点,交x轴于点C.

(1)m、n的值;

(2)请直接写出不等式kx+b<的解集;

(3)x轴下方的图像沿x轴翻折,点B落在点B′处,连接AB′、B′C,求△A B′C的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

小明在学习二次根式的化简后,遇到了这样一个需要化简的式子:.该如何化简呢?思考后,他发现3+2=1+2+(2=(1+2.于是==1+.善于思考的小明继续深入探索;当a+b=(m+n2时(其中a,b,m,n均为正整数),则a+b=m2+2mn+2n2.此时,a=m2+2n2,b=2mn,于是,=m+n.请你仿照小明的方法探索并解决下列问题:

(1)设a,b,m,n均为正整数且=m+n,用含m,n的式子分别表示a,b时,结果是a=   ,b=   

(2)利用(1)中的结论,选择一组正整数填空:=   +   

(3)化简:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标是,点的坐标是,把线段绕点逆时针旋转90°后得到线段,则点的坐标是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1

1求证:2a+b=0;

2若关于x的方程ax2+bx8=0的一个根为4求方程的另一个根

查看答案和解析>>

同步练习册答案