精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,∠B=60°,∠FAC、∠ECA是△ABC的两个外角,AD平分∠FAC,CD平分∠ECA. 求证:四边形ABCD是菱形.

【答案】证明:∵∠B=60°,AB=AC, ∴△ABC为等边三角形,
∴AB=BC,
∴∠ACB=60°,
∠FAC=∠ACE=120°,
∴∠BAD=∠BCD=120°,
∴∠B=∠D=60°,
∴四边形ABCD是平行四边形,
∵AB=BC,
∴平行四边形ABCD是菱形.

【解析】根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.
【考点精析】解答此题的关键在于理解菱形的判定方法的相关知识,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC
(1)求证:DE与⊙O相切;
(2)若BF=2,DF= ,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式组 的解集表示在数轴上,正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.

(1)将△ABC向左平移6个单位长度得到得到△A1B1C1
(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2 , 请画出△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,一次函数y=2x+2的图象与x轴交于A,与y轴交于点C,点B的坐标为(a,0),(其中a>0),直线l过动点M(0,m)(0<m<2),且与x轴平行,并与直线AC、BC分别相交于点D、E,P点在y轴上(P点异于C点)满足PE=CE,直线PD与x轴交于点Q,连接PA.

(1)写出A、C两点的坐标;
(2)当0<m<1时,若△PAQ是以P为顶点的倍边三角形(注:若△HNK满足HN=2HK,则称△HNK为以H为顶点的倍边三角形),求出m的值;
(3)当1<m<2时,是否存在实数m,使CDAQ=PQDE?若能,求出m的值(用含a的代数式表示);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.
(1)将条形统计图补充完整;
(2)本次抽样调查的样本容量是
(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若AC=2 ,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).

查看答案和解析>>

同步练习册答案