精英家教网 > 初中数学 > 题目详情

【题目】下列命题的逆命题为假命题的是( )

A.如果一元二次方程没有实数根,那么

B.线段垂直平分线上任意一点到这条线段两个端点的距离相等.

C.如果两个数相等,那么它们的平方相等.

D.直角三角形两条直角边的平方和等于斜边的平方.

【答案】C

【解析】

分别写出各个命题的逆命题,然后判断正误即可.

、逆命题为:如果一元一次方程,那么没有实数根,正确,是真命题;

、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;

、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;

、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.

故选:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.

(1)求直线AB的解析式;

(2)根据图象写出当y1>y2时,x的取值范围;

(3)若点Py轴上,求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°.点OAB的中点,边AC6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CDCE的长度之和为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一条抛物线轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.

(1)“抛物线三角形”一定是 三角形;

(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;

(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC

⑴求∠ECD的度数;

⑵若CE=5,求CB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成按照此规律,第个图中正方形和等边三角形的个数之和为 个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点CD为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连CD.则下列说法错误的是

A.射线OEAOB的平分线

BCOD是等腰三角形

CCD两点关于OE所在直线对称

DOE两点关于CD所在直线对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】物华小区停车场去年收费标准如下:中型汽车的停车费为600/辆,小型汽车的停车费为400/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000/辆,小型汽车的停车费为600/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.

1)该停车场去年能停中、小型汽车各多少辆?

2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;

3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高速公路有的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30) ,已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为公路的维修时,甲队比乙队少用6

1)求甲乙两工程队每天能完成维修公路的长度分别是多少

2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15 天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元

查看答案和解析>>

同步练习册答案