20£®Èçͼ£¬Ë«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©ÓëÖ±Ïßy=-$\frac{1}{2}$x+4ÏཻÓÚA£¬BÁ½µã£®
£¨1£©µ±k=6ʱ£¬ÇóµãA£¬BµÄ×ø±ê£»
£¨2£©ÔÚË«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©µÄͬһ֧ÉÏÓÐÈýµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬y0£©£¬ÇëÄã½èÖúͼÏó£¬Ö±½Óд³öy0Óë$\frac{{y}_{1}+{y}_{2}}{2}$µÄ´óС¹ØÏµ£®

·ÖÎö £¨1£©½«y=$\frac{6}{x}$Óëy=-$\frac{1}{2}$x+4ÁªÁ¢£¬×é³É·½³Ì×飬½â·½³Ì×é¼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÖеã×ø±êµÄÒâÒ壬¿ÉÖª£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©ÊÇÏß¶ÎMNµÄÖе㣬½áºÏͼÏ󣬷ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º¢ÙµãM¡¢N¡¢P¶¼ÔÚµÚÒ»ÏóÏÞ£»¢ÚµãM¡¢N¡¢P¶¼ÔÚµÚÈýÏóÏÞ£®

½â´ð ½â£º£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{6}{x}}\\{y=-\frac{1}{2}x+4}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=3}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=6}\\{{y}_{2}=1}\end{array}\right.$£¬
ËùÒÔµãAµÄ×ø±êΪ£¨2£¬3£©£¬µãBµÄ×ø±êΪ£¨6£¬1£©£»

£¨2£©¡ßÔÚË«ÇúÏßy=$\frac{k}{x}$£¨k£¾0£©µÄͬһ֧ÉÏÓÐÈýµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬y0£©£¬
¶ø£¨$\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$£©ÊÇÏß¶ÎMNµÄÖе㣬
¡à¿É·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£º
¢ÙÈç¹ûµãM¡¢N¡¢P¶¼ÔÚµÚÒ»ÏóÏÞ£¬ÄÇôy0£¼$\frac{{y}_{1}+{y}_{2}}{2}$£»
¢ÚÈç¹ûµãM¡¢N¡¢P¶¼ÔÚµÚÈýÏóÏÞ£¬ÄÇôy0£¾$\frac{{y}_{1}+{y}_{2}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌ⣺Çó·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µã×ø±ê£¬°ÑÁ½¸öº¯Êý¹ØÏµÊ½ÁªÁ¢³É·½³Ì×éÇó½â£¬Èô·½³Ì×éÓнâÔòÁ½ÕßÓн»µã£¬·½³Ì×éÎ޽⣬ÔòÁ½ÕßÎÞ½»µã£®Ò²¿¼²éÁËÏ߶εÄÖеã×ø±ê¹«Ê½ÒÔ¼°ÊýÐνáºÏµÄ˼Ï룮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÈôÓôúÈë·¨½â·½³Ì×é$\left\{\begin{array}{l}{3x+2y=1¢Ù}\\{y-5x=3¢Ú}\end{array}\right.$£¬×îºÃ½«·½³Ì¢Ú±äÐΣ¬ÓÃy=5x+3µÄ´úÊýʽ´úÈë¢Ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{12-3x}{x-2}$¡Â£¨x+2-$\frac{12}{x-2}$£©•$\frac{{x}^{2}+8x+16}{3}$£¬ÆäÖÐx=3tan30¡ã-8cos60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏB=¡ÏC£¬µãDÔÚ¡÷ABCÍ⣬¡ÏADC=¡ÏACD£®
£¨1£©Èç¹û¡ÏBAC=50¡ã£¬¡ÏDAC=30¡ã£¬Çó¡ÏBCDµÄ¶ÈÊý£»
£¨2£©Èô¡ÏBAD=20¡ã£¬Çó¡ÏBCD¶ÈÊý£»
£¨3£©Èô¡ÏBAD=N¡ã£¬Çó¡ÏBCDµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Ð¡Ò¶´Ó¼ÆËãÖеõ½ÕâÑùµÄ½áÂÛ£ºÈçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬CD¡ÍAB£¬´¹×ãΪD£®ÉèBC=a£¬AC=b£¬AB=c£¬CD=h£¬ÔòÓеÈʽ$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{h}^{2}}$³ÉÁ¢£®ÇëÄãÅжÏСҶµÄ½áÂÛÊÇ·ñÕýÈ·£¿ÈôÕýÈ·£¬Çë¸øÓèÖ¤Ã÷£»Èô²»ÕýÈ·£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ¾ØÐÎABCDÖУ¬µãM¡¢N·Ö±ðÔÚAD¡¢BCÉÏ£¬½«¾ØÐÎÑØ×ÅMNÕÛµþ£¨µãAµÄ¶Ô³ÆµãΪE£¬µãBµÄ¶Ô³ÆµãΪF£©£¬µãEÔÚCDÉÏ£¬¹ýµãE×÷EG¡ÎAD£¬½»MNÓÚµãG£®
£¨1£©Èçͼ1£¬ÇóÖ¤£º¡÷EMGÊǵÈÑüÈý½ÇÐΣ»
£¨2£©Èçͼ2£¬ÈôAD=2DE£¬Çó¡ÏMEGµÄÕýÇÐÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èçͼ3£¬Á¬½ÓAG¡¢BG£¬Èô¡÷ABGµÄÃæ»ýΪ$\frac{15}{12}$£¬AB=AM£¬ÇóNGµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Ö±Ïßa¡¢b±»Ö±ÏßcËù½Ø£¬¸ø³öµÄÏÂÁÐÌõ¼þÖв»Äܵóö½áÂÛa¡ÎbµÄÊÇ£¨¡¡¡¡£©
A£®¡Ï1=¡Ï3B£®¡Ï1=¡Ï4C£®¡Ï1=¡Ï2D£®¡Ï1+¡Ï2=180¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆËã
£¨1£©30-2-3+£¨-3£©2-£¨$\frac{1}{4}$£©-1£» 
£¨2£©£¨-a2£©3-6a2•a4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬°ÑÅ×ÎïÏßy=$\frac{1}{2}{x}^{2}$+1ÏòÉÏÆ½ÒÆ3¸öµ¥Î»£¬ÔÙÏò×óÆ½ÒÆ1¸öµ¥Î»£¬ÔòËùµÃÅ×ÎïÏߵĽâÎöʽÊÇy=$\frac{1}{2}$£¨x+1£©2+4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸