【题目】如图:△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EG⊥AB于G,EF⊥AC交AC的延长线于F,BG与CF的大小关系如何?并证明你的结论.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )
A. 9.5 B. 10.5 C. 11 D. 15.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出下列命题:
(1)两条直线被第三条直线所截,同位角相等;
(2)相等的角是对顶角;
(3)同一平面内,一条直线和两条平行线中的一条相交,则它与另一条也相交;
(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;
(5)不相交的两条直线叫做平行线.
其中真命题的个数是( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决下面问题:
如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.
小新同学是这样思考的:
在平时的学习中,有这样的经验:假如△ABC是等腰三角形,那么在给定一组对应条件,如图a,BE,CD分别是两底角的平分线(或者如图b,BE,CD分别是两条腰的高线,或者如图c,BE,CD分别是两条腰的中线)时,依据图形的轴对称性,利用全等三角形和等腰三角形的有关知识就可证得更多相等的线段或相等的角.这个问题也许可以通过添加辅助线构造轴对称图形来解决.
图a 图b 图c
请参考小新同学的思路,解决上面这个问题..
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC边上的一点,以E为圆心,EC为半径的半圆与以A为圆心AB为半径的圆弧相外切于点F,若AB=4,
(1)求半圆E的半径r的长;
(2)求四边形ADCE的面积;
(3)连接DB、DF,设∠BDF=α,∠AEC=β,求证:β-2α=90°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三条边都相等的三角形叫做等边三角形,它的三个角都是60°. △ABC是等边三角形,点D在BC所在直线上运动,连接AD,在AD所在直线的右侧作∠DAE=60°,交△ABC的外角∠ACF的角平分线所在直线于点E.
(1)如图1,当点D在线段BC上时,请你猜想AD与AE的大小关系,并给出证明;
(2)如图2,当点D在线段BC的反向延长线上时,依据题意补全图形,请问上述结论还成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com