【题目】如图,在正方形ABCD中,E是BC边上的一点,以E为圆心,EC为半径的半圆与以A为圆心AB为半径的圆弧相外切于点F,若AB=4,
(1)求半圆E的半径r的长;
(2)求四边形ADCE的面积;
(3)连接DB、DF,设∠BDF=α,∠AEC=β,求证:β-2α=90°.
【答案】(1)1;(2)10;(3)证明见解析.
【解析】分析:
(1)根据正方形的性质求出AB、AE、BE的长,在Rt△ABE中根据勾股定理得出方程,求出方程的解即可;
(2)根据梯形的面积公式求出即可;
(3)根据三角形的外角性质求出β=∠BAE+90°,根据圆周角定理得出∠BDF=∠BAE,代入求出即可.
本题解析:
(1)在Rt△ABE中,AB=BC=AF=AD=DC=4,
BE=BCCE=4r,AE=BF+EF=4+r,
∵AE=AB+BE,
∴(4+r)=4+(4r),
解得:r=1,
答:半E的半径r的长是1.
(2)梯形ADCE的面积是S=DC(AD+CE)= ×4×(4+1)=10,
答:四边形ADCE的面积是10.
(3)证明:∵∠AEC是Rt△ABE的外角,
∴β=∠BAE+90°,
∵∠BDF=∠BAE,
∴α=∠BAE,
即∠BAE=2α,
∴β=2α+90°,
即β2α=90°.
科目:初中数学 来源: 题型:
【题目】如图,已知为上的一点,按下列要求进行作图.
(1)作的平分线.
(2)在上取一点,使得.
(3)爱动脑筋的小刚经过仔细观察后,进行如下操作:在边上取一点,使得,这时他发现与之间存在一定的数量关系,请写出 与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知, .
(1)用直尺和圆规作出一条过点的直线,使得点关于直线的对称点落在边上(不写作法,保留作图痕迹).
(2)设直线与边的交点为,且,请你通过观察或测量,猜想线段之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EG⊥AB于G,EF⊥AC交AC的延长线于F,BG与CF的大小关系如何?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】衢州新闻网2月16日讯,2013年春节“黄金周”全市接待游客总数为833100人次.将数833100用科学记数法表示应为( )
A.0.833×106
B.83.31×105
C.8.331×105
D.8.331×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.
(1)求证:DF⊥AF.
(2)求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形ABCD的边长为1,∠DAB=60°,E为AD上的动点,F在CD上,且AE+CF=1,
设△BEF的面积为y,AE=x,当点E运动时,能正确描述y与x关系的图像是( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com