【题目】已知菱形ABCD的边长为1,∠DAB=60°,E为AD上的动点,F在CD上,且AE+CF=1,
设△BEF的面积为y,AE=x,当点E运动时,能正确描述y与x关系的图像是( )
A. B. C. D.
【答案】A
【解析】证明△BEF是等边三角形,求出△BEF的面积y与x的关系式,即可得出答案.
解:连接BD,如图所示:
∵菱形ABCD的边长为1,∠DABA=60°,
∴△ABD和△BCD都为正三角形,
∴∠BDE=∠BCF=60°,BD=BC,
∵AE+DE=AD=1,二AE+CF=1,
∴DE=CF,
在△BDE和△BCF中,
DE=CF,∠BDE=∠C,BD=BC,
∴△BDE≌△BCF(SAS);
∴∠DBE=∠CBF,BE=BF,
∵∠DBC=∠DBF+∠CBF=60°,
∴△AEF为正三角形;
∴BE=EF,△BEF的面积y=BE2,
作BE/⊥AD于E/,则AE/=AD=,BE/=,
∵AE=x,
∴EE/=-x,
∴BE2=(-x)2+()2,
∴y=(x-)2+(0≤x≤1).
故选A.
“点睛”此题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、动点问题的函数图象、三角形的面积问题. 求出y与x 的函数关系式是解决问题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC边上的一点,以E为圆心,EC为半径的半圆与以A为圆心AB为半径的圆弧相外切于点F,若AB=4,
(1)求半圆E的半径r的长;
(2)求四边形ADCE的面积;
(3)连接DB、DF,设∠BDF=α,∠AEC=β,求证:β-2α=90°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是( )
A.30x﹣8=31x﹣26
B.30x + 8=31x+26
C.30x + 8=31x﹣26
D.30x﹣8=31x+26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三条边都相等的三角形叫做等边三角形,它的三个角都是60°. △ABC是等边三角形,点D在BC所在直线上运动,连接AD,在AD所在直线的右侧作∠DAE=60°,交△ABC的外角∠ACF的角平分线所在直线于点E.
(1)如图1,当点D在线段BC上时,请你猜想AD与AE的大小关系,并给出证明;
(2)如图2,当点D在线段BC的反向延长线上时,依据题意补全图形,请问上述结论还成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.
(1)在AB边上求作点P,使PC+PD最小:
(2)求出(1)中PC+PD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小慧根据学习函数的经验,对函数的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:
(1)函数的自变量的取值范围是__________;
(2)列表,找出与的几组对应值.
其中, __________;
(3)在平面直角坐标系中,描出以上表中各队对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:____________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )
组别 | A型 | B型 | AB型 | O型 |
频率 | 0.4 | 0.35 | 0.1 | 0.15 |
A.16人
B.14人
C.4人
D.6人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.
(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?
(2)围成鸡场的面积可能达到200平方米吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com