【题目】如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)求证:△ADC≌△CEB;
(2)求证:AD+BE=DE;
(3)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以说明.
【答案】(1)见解析;(2)见解析;(3)DE+BE=AD,理由见解析
【解析】试题分析:(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根据AAS即可得到答案;
(2)由(1)得到AD=CE,CD=BE,即可求出答案;
(3)与(1)证法类似可证出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案.
试题解析:
(1)如图1,∵AD⊥MN,BE⊥MN,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB中,
∵ ,
∴△ADC≌△CEB;
∴DC=BE,AD=EC,
∵DE=DC+EC,
∴DE=BE+AD.
(2)解:DE+BE=AD.理由如下:
如图2,∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
又∵AD⊥MN于点D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE.
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE,AD=CE,
∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.
科目:初中数学 来源: 题型:
【题目】下列用代数式表示不正确的是( )
A. a、b两数的平方和表示为a2+b2; B. a、b两数的和的平方表示为(a+b)2;
C. a与b的平方的和表示为a2+b2; D. a与b的和的平方表示为(a+b)2;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
①已知:a+=1+,求a2+的值.
②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,错误的是( ).
A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形
C.正方形的对角线互相垂直平分D.等腰三角形底边上的中点到两腰的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列命题中,是假命题的是( )
A. 有一个角是直角的平行四边形是矩形 B. 一组邻边相等的矩形是正方形
C. 一组对边平行且相等的四边形是平行四边形 D. 有两组邻边相等的四边形是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是( )
A. 2α+∠A=180° B. α+∠A=90° C. 2α+∠A=90° D. α+∠A=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F为菱形ABCD对角线BD的三等分点.
(1)试判断四边形AECF的形状,并加以证明;
(2)若菱形ABCD的周长为52,BD为24,试求四边形AECF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com