精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.
(1)若 = ,AE=2,求EC的长;
(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.

【答案】
(1)解:∵∠ACB=90°,DE⊥AC,

∴DE∥BC,

,AE=2,

∴EC=6


(2)解:①如图1,

若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.

证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,

又∵∠CFG=∠ECD,

∴∠CGF=∠PCG,

∴CP=PG,

∵∠CFG=∠ECD,

∴CP=FP,

∴PF=PG=CP,

∴线段CP是△CFG的FG边上的中线;

②如图2,

若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.

证明:∵DE⊥AC,

∴∠EDC+∠ECD=90°,

∵∠CFG=∠EDC,

∴∠CFG+∠ECD=90°,

∴∠CPF=90°,

∴线段CP为△CFG的FG边上的高线.

③如图3,

当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.


【解析】(1)易证DE∥BC,由平行线分线段成比例定理列比例式即可求解;(2)分三种情况讨论:①若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线;②若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线;③当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.
(1)求证:△BDE∽△CEF;
(2)当点E移动到BC的中点时,求证:FE平分∠DFC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上.在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:

t(秒)

0

0.16

0.2

0.4

0.6

0.64

0.8

6

X(米)

0

0.4

0.5

1

1.5

1.6

2

y(米)

0.25

0.378

0.4

0.45

0.4

0.378

0.25


(1)当t为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x﹣3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):

选择意向

所占百分比

文学鉴赏

a

科学实验

35%

音乐舞蹈

b

手工编织

10%

其他

c

根据统计图表中的信息,解答下列问题:

(1)求本次调查的学生总人数及a,b,c的值;
(2)将条形统计图补充完整;
(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y= 的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y= 的图象经过点Q,则k=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表

参赛同学

答对题数

答错题数

未答题数

A

19

0

1

B

17

2

1

C

15

2

3

D

17

1

2

E

/

/

7


(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;
(2)最后获知A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分. ①求E同学的答对题数和答错题数;
②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为(
A.4:3
B.3:2
C.14:9
D.17:9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)探究下列问题: ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是( )

A.AC=10
B.AB=15
C.BG=10
D.BF=15

查看答案和解析>>

同步练习册答案