【题目】已知△OAB,O为坐标原点,A(1,2),B(2,0),△OCD是△OAB以点O为位似中心,放大到原图形2倍后的三角形,则C点坐标是____.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.
原质量 | 27 | 24 | 23 | 28 | 21 | 26 | 22 | 27 |
与基准数的差距 |
(1)你认为选取的一个恰当的基准数为 ______ ;
(2)根据你选取的基准数,用正、负数填写上表;
(3)这8筐水果的总质量是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用下列边长相同的正多边形组合,能够铺满地面不留缝隙的是()
A. 正八边形和正三角形 B. 正五边形和正八边形
C. 正六边形和正三角形 D. 正六边形和正五边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com