精英家教网 > 初中数学 > 题目详情
在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠精英家教网,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=1,CD=2,试求四边形AEMF的面积.
分析:(1)根据折叠的性质知∠BAD=∠EAB,∠DAC=∠CAF,即∠EAF=2∠BAC=90°;而∠E=∠ADB=∠F=∠ADC=90°,由此可证得四边形AEMF是矩形;而AE=AF=AD,所以四边形AEMF是正方形;
(2)欲求正方形的面积,需求出正方形的边长,可设正方形的边长为x;由折叠的性质知BE=BD,CD=CF,即可用x表示出BM、MC的长,进而可在Rt△BMC中,由勾股定理求得正方形的边长,即可得到正方形的面积.
解答:解:(1)∵AD⊥BC,
△AEB是由△ADB折叠所得,
∴∠1=∠3,∠E=∠ADB=90°,BE=BD,AE=AD.
又∵△AFC是由△ADC折叠所得,
∴∠2=∠4,∠F=∠ADC=90°,FC=CD,AF=AD.
∴AE=AF.(2分)
又∵∠1+∠2=45°,
∴∠3+∠4=45°.
∴∠EAF=90°.(3分)
∴四边形AEMF是正方形.(5分)
精英家教网
(2)方法一:设正方形AEMF的边长为x;
根据题意知:BE=BD,CF=CD,
∴BM=x-1;CM=x-2.(7分)
在Rt△BMC中,由勾股定理得:BC2=CM2+BM2
∴(x-1)2+(x-2)2=9,
x2-3x-2=0,
解之得:x1=
3+
17
2
x2=
3-
17
2
(舍去).
S正方形AEMF=(
3+
17
2
)2=
13+3
17
2
.(10分)
方法二:设:AD=x
S△ABC=
1
2
•BC•AD
=
3
2
x

∴S五边形AEBCF=2S△ABC=3x(7分)
S△BMC=
1
2
BM•CM=
1
2
(x-1)(x-2)

且S正方形AEMF=S五边形AEBCF+S△BMC
x2=3x+
1
2
(x-1)(x-2)
即x2-3x-2=0,
解之得:x1=
3+
17
2
x2=
3-
17
2
(舍去),
S正方形AEMF=(
3+
17
2
)2=
13+3
17
2
.(10分)
点评:此题考查了图形的折叠变换、正方形的判定、勾股定理以及图形面积的求法,能够根据折叠的性质正确地得到与已知和所求相关的相等角和相等边,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动精英家教网;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当
S△BCQ
S△ABC
=
1
3
,求
S△BPQ
S△ABC
的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<∠
1
2
ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=
1
2
∠ABC(0°<∠CBE<45°).
求证:DE2=AD2+EC2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以每秒4cm,的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ
(2)当x为何值时,PQ∥BC
(3)△APQ能否与△CQB相似?若能,求出x的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案