精英家教网 > 初中数学 > 题目详情

在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是

A.4个         B.3个        C.2个        D.1个

 

【答案】

A

【解析】

试题分析:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,

∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG。

∵在△ABG和△AEC中,AB=AE,∠CAE=∠BAG,AC=AG,

∴△ABG≌△AEC(SAS),∴BG=CE。故①正确。

设BG、CE相交于点N,

∵△ABG≌△AEC,∴∠ACE=∠AGB。

∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,

∴∠CNG=360°﹣(∠NCF+∠NGF+∠F)=360°﹣(180°+90°)=90°。

∴BG⊥CE。故②正确。

过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,

∵AH⊥BC,∴∠ABH+∠BAH=90°。

∵∠BAE=90°,∴∠EAP+∠BAH=180°﹣90°=90°。∴∠ABH=∠EAP。

∵在△ABH和△EAP中,∠ABH=∠EAP,∠AHB=∠P=90°,AB=AE,

∴△ABH≌△EAP(AAS)。∴∠EAM=∠ABC。故④正确。

∵△ABH≌△EAP,∴EP=AH。

同理可得GQ=AH。∴EP=GQ。

∵在△EPM和△GQM中,∠P=∠MQG=90°,∠EMP=∠GMQ,EP=GQ,

∴△EPM≌△GQM(AAS)。∴EM=GM。∴AM是△AEG的中线。故③正确。

综上所述,①②③④结论都正确。故选A。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、在锐角三角形ABC中,∠A=50°,AB>BC,则∠B的取值范围是
40°<∠B<80°

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角三角形ABC中,a=1,b=3,那么第三边c的变化范围是(  )
A、2<c<4
B、2<c<3
C、2<c<
10
D、2
2
<c<
10

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角三角形ABC中,AD,BE分别在边BC,AC上的高.求证:△ACD∽△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角三角形ABC中,∠B=60°,AD⊥BC于D,AD=3,AC=5,则AB=
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

在锐角三角形ABC中,2∠B=∠C,则AB与2AC的大小关系为(  )

查看答案和解析>>

同步练习册答案