精英家教网 > 初中数学 > 题目详情
2.如图,在每个小正方形的边长均为1的方格纸中,线段AB的端点A、B均在小正方形的顶点上.
(1)在方格纸中画出以AB为一条直角边的等腰直角△ABC,顶点C在小正方形的顶点上;
(2)在方格纸中画出△ABC的中线BD,将线段DC绕点C顺时针旋转90°得到线段CD′,画出旋转后的线段CD′,连接BD′,直接写出四边形BDCD′的面积.

分析 (1)直接利用等腰直角三角形的性质得出C点位置;
(2)直接利用三角形中线的定义以及结合网格直接得出四边形BDCD′的面积.

解答 解:(1)如图所示:△ABC即为所求;

(2)如图所示:CD′即为所求,
四边形BDCD′的面积为:$\sqrt{10}$×$\sqrt{10}$=10.

点评 此题主要考查了旋转变换以及等腰直角三角形的性质,正确得出对应点位置是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.在一次函数y=kx+3中,y随x的增大而减小,则k的值可能是(  )
A.0B.1C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,(请在对应的位置画出分解图),请找出:
(1)∠FAD和∠B是AD与BE被截所得的同位角,
∠FAC和∠B是AC与BE被截所得的同位角.
(2)∠CAD和∠ACB是AD与BE被截所得的内错角,
∠FAC和∠ACB是FB与BE被截所得的内错角.
(3)∠BAD和∠B是AD与BE被截所得的同旁内角;
∠CAD和∠ACE是AD与BE被截所得的同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,点A为直线y=-x上一点,过A作OA的垂线交双曲线y=$\frac{k}{x}$(x<0)于点B,若OA2-AB2=12,则k的值为-6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在函数y=$\frac{1-x}{x+2}$中,自变量x的取值范围是x≠-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.看图.项空:
(1)∵a⊥b,c⊥a.(已知)
∴∠1=∠2=90°(垂直的定义)
∴b∥c.(同位角相等,两直线平行)
(2)用一句精炼的话总结(1)所包含的规律垂直于同一条直线的两条直线平行.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球,摸出的2个球都是红球的概率是$\frac{9}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.a、b都是实数,且a<b,则下列不等式的变形正确的是(  )
A.a+c>b+cB.3a<3bC.-a+1<-b+1D.$\frac{a}{2}$$>\frac{b}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.“仅用刻度尺能画一个角的平分线吗?”小明想到了以下的方法:如图,在∠MON的边OM、ON上分别量取OA=OB,OC=OD;连结AD、BC交于点P.则射线OP就是∠MON的角平分线.
(1)步骤1:从OA=OB,OC=OD,再加上已知条件∠AOD=∠BOC.
          可得△AOD≌△BOC.
(2)步骤2:证明△APC≌△BPD,理由如下;
(3)步骤3:证明射线OP就是∠MON的角平分线,理由如下.

查看答案和解析>>

同步练习册答案