【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正确的结论有( )
A. 5个 B. 4个
C. 3个 D. 2个
【答案】B
【解析】(1)∵AD平分△ABC的外角∠EAC
∴∠EAD=∠DAC,
∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,
∴∠EAD=∠ABC,
∴AD∥BC,
故①正确。
(2)由(1)可知AD∥BC
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABC=2∠ADB,
∵∠ABC=∠ACB,
∴∠ACB=2∠ADB,
故②正确。
(3)在△ADC中,∠ADC+∠CAD+∠ACD=180°,
∵CD平分△ABC的外角∠ACF,
∴∠ACD=∠DCF,
∵AD∥BC,
∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB
∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,
∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°
∴∠ADC+∠ABD=90°
∴∠ADC=90°-∠ABD,
故③正确,
(4)如果BD平分∠ADC,则四边形ABCD是平行四边形,
∵∠ABD=∠ADB,
∴AB=AD,
∴四边形ABCD是菱形,
∴只有在△ABC是正三角形时才有BD平分∠ADC
故④错误。
(5)∵∠BAC+∠ABC=∠ACF,
∴∠BAC+∠ABC=∠ACF,
∵∠BDC+∠DBC=∠ACF,
∴∠BAC+∠ABC=∠BDC+∠DBC,
∵∠DBC=∠ABC,
∴∠BAC=∠BDC,即∠BDC=∠BAC.
故⑤正确。
故答案为:①②③⑤。
科目:初中数学 来源: 题型:
【题目】下列各组线段中,能成比例的是( )
A. 1cm,3cm,4cm,6cm B. 30cm,12cm,0.8cm,0.2cm
C. 0.1cm,0.2cm,0.3cm,0.4cm D. 12cm,16cm,45cm,60cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 0.350是精确到0.001的近似数
B. 3.75万是精确到百位的近似数
C. 近似数13.9与13.90表示的意义相同
D. 近似数1.20是由数口四舍五入得到的,那么数a的取值是l.195≤a<l.205
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为( )
A.2% B.5% C.10% D.20%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各组量中,不是具有相反意义的量是( )
A. 向南走100米和向北走50米 B. 零上10℃和零下2℃
C. 赢了10局和输了5局 D. 伸长10厘米和减少3千克
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com