【题目】如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)
【答案】(1)相切(2)AC+AD=BC(3)16π
【解析】
试题分析:(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.
(3)根据大圆的面积减去小圆的面积即可得到圆环的面积.
试题解析:(1)BC所在直线与小圆相切.
理由如下:
过圆心O作OE⊥BC,垂足为E;
∵AC是小圆的切线,AB经过圆心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直线是小圆的切线.
(2)AC+AD=BC.
理由如下:
连接OD.
∵AC切小圆O于点A,BC切小圆O于点E,
∴CE=CA;
∵在Rt△OAD与Rt△OEB中,,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD.
(3)∵∠BAC=90°,AB=8cm,BC=10cm,
∴AC=6cm;
∵BC=AC+AD,
∴AD=BC﹣AC=4cm,
∵圆环的面积为:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),
又∵OD2﹣OA2=AD2,
∴S=42π=16π(cm2).
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用水,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如表:
收费标准(注:水费按月结算) | |
每月用水量 | 单价:元/立方米 |
不超出8立方米(含8立方米)部分 | 2.8 |
超出8立方米,不超出12立方米(含12立方米)部分 | 3.6 |
超出12立方米部分 | 4.8 |
请根据上表的内容解答下列问题:
(1)若某户居民11月份用水a立方米(其中8<a<12),请用含a的代数式表示应收水费.
(2)若某户居民12月份交水费56元,则用水量为多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( )
A. 8%B. 9%C. 10%D. 11%
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿色电力,与你同行”,根据中国汽车工业协会发布的数据显示,我国新能源汽车销售量逐年增加,据统计2017年新能源汽车年销售量为82.4万辆,预计2019年新能源汽车年销售量将达到100万辆.设这两年新能源汽车销售量年平均增长率为x,根据题意可列方程为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )
A. AB=A′B′=5,BC=B′C′=3 B. AB=B′C′=5,∠A=∠B′=40°
C. AC=A′C′=5,BC=B′C′=3 D. AC=A′C′=5,∠A=∠A′=40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了了解高峰时段16路公交车从总站乘该路车出行的人数情况,随机抽查了10个班次乘该路车的人数,结果如下:
14,23,16,25,23,28,26,27,23,25.
(1)这组数据的众数为________,中位数为________;
(2)计算这10个班次乘该路车人数的平均数;
(3)如果16路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长方形周长为30,若一边长用字母x表示,则此长方形的面积( )
A.x(15﹣x)
B.x(30﹣x)
C.x(30﹣2x)
D.x(15+x)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com