精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长
线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.
(1)求证:∠GCF=∠FCE;
(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;
(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.
(1)证明见解析;(2)PG=PB+DG,证明见解析;(3)存在.3;理由见解析.

试题分析::(1)过点F作FH⊥BE于点H,利用正方形的性质,证得△BAP≌△HPF得出PH=AB,BP=FH进一步得出BP+PC=PC+CH,CH=BP=FH,∠FHC=90°,求得∠DCF=90°-45°=45°得出结论;
(2)延长PB至K,使BK=DG,连接AK,证得△ABK≌△ADG和△KAP≌△GAP,找出边相等得出结论;  
(3)首先判定存在,在直线AB上取一点M,使四边形DMPF是平行四边形,证得△ABP≌△DAM,进一步球的结论即可.
(1)证明:过点F作FH⊥BE于点H,

∵四边形ABCD是正方形,
∴∠ABC=∠PHF=∠DCB=90º,AB=BC,
∴∠BAP+∠APB=90º
∵AP⊥PF,
∴∠APB+∠FPH=90º
∴∠FPH=∠BAP
又∵AP=PF
∴△BAP≌△HPF
∴PH=AB,BP=FH 
∴PH="BC"
∴BP+PC=PC+CH
∴CH="BP=FH"
而∠FHC=90º. ∴∠FCH=CFH=45º
∴∠DCF=90º-45º=45º
∴∠GCF=∠FCE
(2)PG=PB+DG
证明:延长PB至K,使BK=DG,
∵四边形ABCD是正方形
∴AB="AD," ∠ABK=ADG=90º
∴△ABK≌△ADG
∴AK="AG," ∠KAB=∠GAD,
而∠APF="90" º,AP=PF
∴∠PAF=∠PFA="45" º
∴∠BAP+∠KAB=∠KAP="45" º=∠PAF
∴△KAP≌△GAP
∴KP=PG,
∴KB+BP=DG+BP=PG
即,PG=PB+DG
(3)存在.
如图,在直线AB上取一点M,使四边形DMPF是平行四边形,
则MD∥PF,且MD=FP,
又∵PF=AP,
∴MD=AP
∵四边形ABCD是正方形 ,
∴AB=AD,∠ABP=∠DAM
∴△ABP≌△DAM 
∴AM=BP=2,
∴BM=AB-AM=5-2="3."
∴当BM=3,BM+AM=AB时,四边形DMPF是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O, 连接DE.
(1)求证:∆ADE≌∆CED;
(2)求证: DE∥AC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)如图②,连接DE,当t为何值时,△DEF为直角三角形?
(4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
(1)求证:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度数

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,BM交CD于点E,且点E为CD的中点,连接MD,过点D作ND⊥MD于点D,DN交BM于点N.
(1)若BC=,求△BDE的周长;
(2)求证:NE-ME=CM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D,E在△ABC的边BC上,连 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②?③:①③?②;②③?①.
(1)以上三个命题是真命题的为(直接作答)                         
(2)请选择一个真命题进行证明(先写出所选命题,然后证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三角形中与△ACD全等的是
A.△ACFB.△ADE C.△ABCD.△BCF

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,O是△ABC的∠ABC.∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC = 10,则△ODE的周长为       .

查看答案和解析>>

同步练习册答案