精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
(1)求证:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度数
(1)证明见解析;(2)100°.

试题分析:(1)先根据题意得出∠ABE=∠CDA,然后结合题意条件利用SAS可判断三角形的全等;
(2)根据题意可分别求出∠AEC及∠ACE的度数,在△AEC中利用三角形的内角和定理即可得出答案.
(1)证明:在梯形ABCD中,∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA,
∴∠ABE=∠CDA
在△ABE和△CDA中,

∴△ABE≌△CDA.
(2)解:由(1)得:∠AEB=∠CAD,AE=AC,
∴∠AEB=∠ACE,
∵∠DAC=40°,
∴∠AEB=∠ACE=40°,
∴∠EAC=180°-40°-40°=100°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AD、BC相交于O,OA=OC,∠OBD=∠ODB. 求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长
线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.
(1)求证:∠GCF=∠FCE;
(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;
(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图所示,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证: ME=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD中,∠A=∠C=900平分∠A BC交CD于E,DF平分∠A DC交AB于F
(1)若∠ABC=600,则∠ADC=       °, ∠ADF=       °;
(2)BE与DF平行吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB也是正方形,以B为圆心,BA长为半径画圆,连结AF,CF,则图中阴影部分面积为      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(  )。
A.B.C.D.

查看答案和解析>>

同步练习册答案