分析 先画树状图展示所有12种等可能的结果数,再根据一次函数图象与系数的关系,当k<0,b>0时,一次函数y=kx+b的图象不经过第三象限,即一次函数y=kx+b的图象不经过第三象限的结果数为4,然后根据概率公式求解.
解答 解:画树状图为:![]()
共有12种等可能的结果数,其中一次函数y=kx+b的图象不经过第三象限的结果数为4,
所以一次函数y=kx+b的图象不经过第三象限的概率=$\frac{4}{12}$=$\frac{1}{3}$.
故答案为$\frac{1}{3}$.
点评 本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了一次函数图象与系数的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AC=DE | B. | EF=BC | C. | ∠AFE=∠DBC | D. | ∠E=∠C |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com