精英家教网 > 初中数学 > 题目详情
7.已知圆上均匀分布着2000个点,从中均等地选出A、B、C、D四个不同的点,则弦AB与CD相交的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 根据每4个点,共有6条连线,有两条是相交的,再根据概率公式即可得出答案.

解答 解:∵每4个点,共有6条连线,即6条弦,有两条是相交的,
∴弦AB与CD相交的概率是$\frac{1}{3}$;
故选D.

点评 此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1是景德镇市白鹭大桥,此桥为独斜塔无背索斜拉桥,是高度的科学性与艺术性的完美结合.如图2是主桥段AN-NO-OB的一部分,其中NO部分是一段水平路段,西侧AN是落差高度约为1.2米的小斜坡(图中AH=1.2米),斜塔MN与水平线夹角为58°.为了测量斜塔,如图3,小敏为了测量斜塔,她在桥底河堤西岸上取点P处并测得点A与塔顶M的仰角分别为45°与76°,已知PQ=24.4米(点Q为M在桥底的投影,且M,A,Q在一条直线上).
(1)斜塔MN的顶部M距离水平线的高度MH为多少?
(2)斜塔MN的长度约为多少?(精确到0.1)
参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.0,sin58°≈0.85,cos58°≈0.53,tan58°≈1.6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
(1)求证:AE∥CD;
(2)求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若多项式mx4+x3+nx-3含有因式(x+1)和(x-1),则mn的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB是⊙O的直径,点P在AB的延长线上,PC切⊙O于点C,AF⊥PC,垂足是点F,AF交⊙O于点E,PB=2,PC:OE=$\sqrt{3}$:1,
(1)求AC的长度;
(2)求CF•EF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知△ABC内接于⊙O,点I是△ABC的内心,AI的延长线交BC于点E,交⊙O于点D.
求证:DB=DI=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k、b,则一次函数y=kx+b的图象不经过第三象限的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.函数y=kxm-1+3(k≠0)是一次函数,试求方程$\frac{3}{x+3}=\frac{m}{x+1}$的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形,设最长的一段的长度为x厘米,则x的取值范围为2≤x<5.

查看答案和解析>>

同步练习册答案