分析 (1)求出∠ACE=∠DCB,根据SAS证出两三角形全等,根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°-(∠EAB+∠DBC),代入求出即可;
(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB=180°-(∠EAB+∠DBC),代入求出即可.
解答 解:
(1)∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
在△ACE和△DCB中
∵$\left\{\begin{array}{l}{AC=CD}\\{∠ACE=∠DCB}\\{CE=CB}\end{array}\right.$,![]()
∴△ACE≌△DCB,
∴∠AEC=∠DBC,∠CDB=∠CAE,
∵∠ACD=60°,
∴∠CDB+∠DBC=∠ACD=60°,
∴∠CAE+∠DBC=60°,
∴∠AFB=180°-60°=120°;
当∠ACD=90°时,
∵∠ACD=90°,
∴∠CDB+∠DBC=∠ACD=90°,
∵△ACE≌△DCB,
∴∠AEC=∠DBC,∠CDB=∠CAE,
∴∠CAE+∠DBC=90°,
∴∠AFB=180°-90°=90°;
故答案为:120°,90°;
(2)解:当∠ACD=β时,∠AFB=180°-β,理由是:
∵∠ACD=β,
∴∠CDB+∠DBC=∠ACD=β,
∵△ACE≌△DCB,
∴∠AEC=∠DBC,∠CDB=∠CAE,
∴∠CAE+∠DBC=β,
∴∠AFB=180°-(∠CAE+∠DBC)=180°-β;
故答案为:180°-β.
点评 本题考查了全等三角形的性质和判定,三角形的外角性质,三角形的内角和定理,解此题的关键是找出已知量和未知量之间的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 项目 品牌 | 单价/元 | 购买数量/台 | 购买费用/元 |
| A | 800 | x | 800x |
| B | 1000 | 120-x | 1000(120-x) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com