【题目】如图,在中,,的垂直平分线交于点,交于点.
(1)若,求的度数;
(2)若,的周长为,求的长.
【答案】(1)30°;(2)8.
【解析】
(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.
(2)根据AE=6,AB=AC,得出CD+AD=12,由△CBD的周长为20,代入即可求出答案.
(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠C=70°
∵AB的垂直平分线MN交AC于点D,
∴AD=BD,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC-∠ABD=30°
(2)∵AE=6,
∴AC=AB=2AE=12
∵△CBD的周长为20,
∴BC=20-(CD+BD)=20-(CD+AD)=20-12=8,
∴BC=8.
科目:初中数学 来源: 题型:
【题目】如图,已知,点, 分别是射线, 上两定点,且, ;动点从点向点运动,以为斜边向右侧作等腰直角.设线段的长,点到射线的距离为.
(1)若,直接写出点到射线的距离;
(2)求关于的函数表达式,并在图中画出函数图象;
(3)当动点从点运动到点,求点运动经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.
例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由图2,可得等式 ;
(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.
(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.
(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.
①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;
②研究①拼图发现,可以分解因式2a2+5ab+2b2= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣4,5),C(﹣3,0).将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',其中点A',B',分别为点A,B,C的对应点.
(1)请在所给坐标系中画出△A'B'C',并直接写出点C'的坐标;
(2)若AB边上一点P经过上述平移后的对应点为P'(x,y),用含x,y的式子表示点P的坐标;(直接写出结果即可)
(3)求△A'B'C'的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为奖励该校在南山区第二届学生技能大赛中表现突出的20名同学,派李老师为这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求笔记本和钢笔的单价分别为多少元?
(2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>10)支钢笔,所需费用为y元,请你求出y与x之间的函数关系式;
(3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ADB;
(2)求tan∠ADB的值;
(3)延长BC至F,连接FD,使△BDF的面积等于8 ,求证:DF与⊙O相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】本学期学习了一元一次不等式的解法,下面是甲同学的解题过程:
解不等式.
解:不等式两边同时乘以4,得:
去分母,得:
去括号,得:
移项,得:
合并同类项,得:
系数化1,得:
不等式的解集在数轴上表示为:
上述甲同学的解题过程从第___步开始出现错误,错误的原因是____.请帮甲同学改正错误,写出完整的解题过程,并把正确解集在数轴上表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应“足球进校园”的号召,学校开设了足球兴趣拓展班,计划同时购买A,B两种足球30个,A,B两种足球的价格分别为50元个,80元个,设购买B种足球x个,购买两种足球的总费用为y元.
求y关于x的函数表达式.
在总费用不超过1600元的前提下,从节省费用的角度来考虑,求总费用的最小值.
因足球兴趣拓展班的人数增多,所以实际购买中这两种足球总数超过30个,总费用为2000元,则该学校可能共购买足球______个直接写出答案
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com