【题目】为了响应“足球进校园”的号召,学校开设了足球兴趣拓展班,计划同时购买A,B两种足球30个,A,B两种足球的价格分别为50元个,80元个,设购买B种足球x个,购买两种足球的总费用为y元.
求y关于x的函数表达式.
在总费用不超过1600元的前提下,从节省费用的角度来考虑,求总费用的最小值.
因足球兴趣拓展班的人数增多,所以实际购买中这两种足球总数超过30个,总费用为2000元,则该学校可能共购买足球______个直接写出答案
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线y= x﹣ 分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线与x轴和 y 轴分别交与A,B 两点,另一直线经过点B和点C(6,-5).
(1)求 A,B 两点的坐标;
(2)证明:△ABC 是直角三角形;
(3)在 x 轴上找一点 P,使△BCP 是以 BC 为底边的等腰三角形,求出 P 点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线 的顶点为 ,与 轴的一个交点 在点(-3, 0)和(-2 ,0)之间,其部分图象如图,则以下结论:① <0 ;② <0;③ =2;④方程 有两个相等的实数根,其中正确结论的个数为个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )
A. ()7B. 2()7C. 2()8D. ()9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:
(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是 ;
(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF的最小值为 ;
(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元.玲玲的爸爸妈妈商量后决定只选一个公司单独完成.
(1)如果从节约时间的角度考虑应选哪家公司?
(2)如果从节约开支的角度考虑呢?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com