【题目】抛物线 的顶点为 ,与 轴的一个交点 在点(-3, 0)和(-2 ,0)之间,其部分图象如图,则以下结论:① <0 ;② <0;③ =2;④方程 有两个相等的实数根,其中正确结论的个数为个.
【答案】3
【解析】∵抛物线与x轴有两个交点,∴b2-4ac>0,所以①错误;
∵顶点为D(-1,2),
∴抛物线的对称轴为直线x=-1,
∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,
∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,
∴当x=1时,y<0,
∴a+b+c<0,所以②正确;
∵抛物线的顶点为D(-1,2),∴a-b+c=2,
∵抛物线的对称轴为直线x=- =-1,
∴b=2a,∴a-2a+c=2,即c-a=2,所以③正确;
∵当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,
∴方程ax2+bx+c -2=0有两个相等的实数根,所以④正确.故正确结论的个数有3个.
根据图像得到抛物线与x轴有两个交点,得到b2-4ac>0;由顶点为D,得到a-b+c=2,二次函数有最大值,得到抛物线的对称轴为直线x=-1,由得到抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,得到抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,得到a+b+c<0,方程ax2+bx+c -2=0有两个相等的实数根.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣4,5),C(﹣3,0).将△ABC向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',其中点A',B',分别为点A,B,C的对应点.
(1)请在所给坐标系中画出△A'B'C',并直接写出点C'的坐标;
(2)若AB边上一点P经过上述平移后的对应点为P'(x,y),用含x,y的式子表示点P的坐标;(直接写出结果即可)
(3)求△A'B'C'的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:
(1)此次抽查的学生数为人;
(2)补全条形统计图;
(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是;
(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
例如:方程 的解为 ,不等式组 的解集为 ,因为 ,所以,称方程为不等式组的关联方程.
(1)在方程①,②,③中,不等式组 的关联方程是 ;(填序号)
(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)
(3)若方程,都是关于的不等式组的关联方程,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为践行“绿水青山就是金山银山”的理念,坚持绿色发展,建设美丽家园,青年大学生小王准备在家乡边疆种植两种树木.经研究发现,A种树木种植费用y(元)与 种植面积 x(m2)的函数表达式如图所示,B种树木的种植费用为400元/ m2.
(1)求y与x的函数表达式;
(2)A种树木和 B 种树木种植面积共 1500 m,若A种树木种植面积不超过B种树木种 植面积的2倍,且 A 种树木种植面积不少于 400 m,应该如何分配A种树木和B种树木的种植面积才能使得总费用最少?最少费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了响应“足球进校园”的号召,学校开设了足球兴趣拓展班,计划同时购买A,B两种足球30个,A,B两种足球的价格分别为50元个,80元个,设购买B种足球x个,购买两种足球的总费用为y元.
求y关于x的函数表达式.
在总费用不超过1600元的前提下,从节省费用的角度来考虑,求总费用的最小值.
因足球兴趣拓展班的人数增多,所以实际购买中这两种足球总数超过30个,总费用为2000元,则该学校可能共购买足球______个直接写出答案
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小莉手中有块周长为100cm的长方形硬纸片,其中长比宽多10cm.
(1)求长方形的面积;
(2)小莉想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为720cm2的新纸片另作他用,请判断小莉能否成功,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为( )
A. 140°B. 120°C. 100°D. 70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三沙市一艘海监船某天在黄岩鸟P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据: ≈1.414,结果精确到0.1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com