精英家教网 > 初中数学 > 题目详情

【题目】如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,ABBC,AB//DE.求旗杆AB的高度.(参考数据:sin37°,cos37°,tan37°.计算结果保留根号)

【答案】3+3.5

【解析】

试题分析:延长ED交BC延长线于点F,则CFD=90°,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtanAEG=4tan37°可得答案.

试题解析:如图,延长ED交BC延长线于点F,则CFD=90°,

tanDCF=i==

∴∠DCF=30°,

CD=4,

DF=CD=2,CF=CDcosDCF=4×=2

BF=BC+CF=2+2=4

过点E作EGAB于点G,

则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,

∵∠AED=37°,

AG=GEtanAEG=4tan37°,

则AB=AG+BG=4tan37°+3.5=3+3.5,

故旗杆AB的高度为(3+3.5)米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;

(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)

(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x(x为正整数),每月的销量为y箱.

1)写出yx中间的函数关系式和自变量的取值范围;

2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD四个顶点的坐标分别是A(1,2),B(4,2),C(4, ),D(1, ).

(1)求这个长方形的面积;

(2)将这个长方形向下平移2个单位长度,再向右平移1个单位长度,得到长方形A′B′C′D′,求长方形A′B′C′D′四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(-4,3)、B(-2,3

1)描出AB两点的位置,并连结ABAOBO

2AOB的面积是__________

AOB向右平移4个单位,再向上平移2个单位,画出平移后的ABC,并写出各点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A=60°,C=80°,则∠B=(  )

A. 60° B. 30° C. 20° D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有 . (填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+

(1)求该抛物线的函数关系式与C点坐标;

(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?

(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);

i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;

ii:试求出此旋转过程中,(NA+NB)的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点O到△ABC的两边AB、AC所在直线的距离OD=OE,且OB=OC.
(1)如图,若点O在BC上,求证:AB=AC;

(2)如图,若点O在△ABC的内部,求证:AB=AC;

(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.

查看答案和解析>>

同步练习册答案