分析 连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
解答
解:连接CD,作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴DC=$\frac{1}{2}$AB=$\sqrt{2}$,四边形DMCN是正方形,DM=1.
则扇形FDE的面积=$\frac{90π×(\sqrt{2})^{2}}{360}$=$\frac{π}{2}$.
∵CA=CB,∠ACB=90°,点D为AB的中点,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
在△DMG和△DNH中,
$\left\{\begin{array}{l}∠DMG=∠DNH\\∠GDM=∠HDN\\ DM=DN\end{array}\right.$,
∴△DMG≌△DNH(AAS),
∴S四边形DGCH=S四边形DMCN=1.
∴阴影部分的面积=$\frac{π}{2}$-1.
故答案为:$\frac{π}{2}$-1.
点评 本题考查的是扇形面积的计算,根据题意作出辅助线,构造出正方形,得到S四边形DGCH=S四边形DMCN是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1、-3、0 | B. | 0、-3、1 | C. | -3、0、1 | D. | -3、1、0 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com