精英家教网 > 初中数学 > 题目详情

【题目】如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)

【答案】简介:由题意得AC=22米,AB=1.5米,

过点B做BE⊥CD,交CD于点E,

∵∠DBE=32°,

∴DE=BEtan32°≈22×0.62=13.64米,

∴CD=DE+CE=DE+AB=13.64+1.5≈15.1米.

答:旗杆CD的高度约15.1米.


【解析】过点B做BE⊥CD,交CD于点E,在Rt△BDE中,由tan∠DBE=,可求出DE的长,再由CD=DE+CE=DE+AB可求出CD的长.
【考点精析】本题主要考查了关于仰角俯角问题的相关知识点,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】寒假将近,某学校将组织七年级部分同学去亚布力参加“冰雪冬令营”.学校提前给所去学生预定房间,如果在所预定的房间里每间住人,则有人无法安排;每间住人,则空出张床.

1)本次参加“冰雪冬令营”的学生总数为多少人?

2)冬令营结束时,学校准备给这些同学每人送一个售价为元的种纪念品,但实际购买时发现,两种商品的售价都有变动,种商品打八折出售,种商品的价钱比原售价提高了,若实际购买种商品费用比购买种商品费用的倍多元,那么此次活动中学校购买种商品多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线 经过点A(0,2)和B(1, ).
(1)求该抛物线的表达式;
(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;
(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在线段.从点出发向点运动,速度为2cm/s;同时,点也从点出发用1s到达处,并在处停留2s,然后按原速度向点运动,速度为4cm/s.最终,点比点1s到达.设点运动的时间为s.

(1)线段的长为 cm;=3s时,两点之间的距离为 cm;

(2)求线段的长;

(3)两点同时出发至点到达点处的这段时间内,为何值时,两点相距1 cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM.

(1)在图1中,当∠ABC=ADC=90°时,求证:AD+AB=AC

(2)若把(1)中的条件ABC=ADC=90°”改为∠ABC+ADC=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(图1) (图2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“解直角三角形”一章我们学习到“锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数” .
小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:
(1)函数的定义是:“一般地,在一个变化的过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,我们就把x称为自变量,y称为因变量,y是x的函数”.由函数定义可知,锐角的正弦函数的自变量是 , 因变量是 , 自变量的取值范围是
(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:
sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383
sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346
sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087
sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931
sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074
sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474
sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027
sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015
sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675
sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000
sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027
sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731
sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.6293203910498375
sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582
sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475
sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941
sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708
sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474
sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239
sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386
sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678
sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009
sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017
sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535
sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683
sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057
sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378
sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733
sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738
sin88°=0.9993908270190958 sin89°=0.9998476951563913
①列表(小力选取了10对数值);

x

y

②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度);
③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点;

④连线. 根据描出的点,画出该函数的图象;
(3)结合函数的图象,写出该函数的一条性质:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数 , 下列说法正确的是(  )
A.图象经过点(2,﹣1)
B.图象位于第二、四象限
C.当x<0时,y随x的增大而减小
D.当x>0时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=x+2与双曲线 相交于A,B两点其中点A的纵坐标为3,点B的纵坐标为﹣1.

(1)求k的值;
(2)若y1<y2 , 请你根据图象确定x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3AD=4,则ED的长为

A B3 C1 D

查看答案和解析>>

同步练习册答案