精英家教网 > 初中数学 > 题目详情

【题目】2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°

(1)求发射台与雷达站之间的距离LR;
(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?
(参考数据:son42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )

【答案】
(1)

解:在Rt△ALR中,AR=6km,∠ARL=42.4°,

由cos∠ARL= ,得LR=ARcos∠ARL=6×cos42.4°≈4.44(km).

答:发射台与雷达站之间的距离LR为4.44km


(2)

解:在Rt△BLR中,LR=4.44km,∠BRL=45.5°,

由tan∠BRL= ,得BL=LRtan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),

又∵sin∠ARL= ,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),

∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).

答:这枚火箭从A到B的平均速度大约是0.51km/s.


【解析】(1)根据题意直接利用锐角三角函数关系得出LR=ARcos∠ARL求出答案即可;(2)根据题意直接利用锐角三角函数关系得出BL=LRtan∠BRL,再利用AL=ARsin∠ARL,求出AB的值,进而得出答案.此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一副三角板的两个直角顶点重合在一起.

1)若EON=140°,求MOF的度数;

2)比较EOMFON的大小,并写出理由;

3)求EON+MOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=10,BC=6,点E为CD边上一点。

(1)当AE平分∠BED时,求DE的长。

(2)你能把矩形ABCD沿某条直线剪一刀分成两块,再拼成一个菱形吗?如果能,在备用图中画出示意图,并计算菱形较长对角线的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:
①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述结论中正确的个数是(  )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx(k<0)与双曲线交于A(x1,y1),B(x2,y2)两点,则3x1y2-5x2y1的值为 __________.

【答案】-6

【解析】试题分析:∵点Ax1y1),Bx2y2)是双曲线y上的点,

x1y1x2y2=-3

∵直线ykxk0)与双曲线y交于点Ax1y1),Bx2y2)两点,

x1=-x2y1=-y2

∴原式=-3x1y15x2y2915=-6

故答案为:6

点睛:本题考查的是反比例函数与一次函数的交点问题,反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=-x2y1=-y2是解答此题的关键.

型】填空
束】
15

【题目】AB两地相距180km,新修的高速公路开通后,在AB两地间行驶的长途客车平均车速提高了 50%,而从A地到B地的时间缩短了 1h .若设原来的平均车速为xkm/h,则根据题意可列方程为 _____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

(1)判断直线l与⊙O的位置关系,并说明理由;
(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;
(3)在(2)的条件下,若DE=4,DF=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为 个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC,A、B、C之和为多少?为什么?

A+B+C=180°

理由:作∠ACD=A,并延长BCE

∵∠ACD=   (已作)

ABCD(   

∴∠B=      

而∠ACB+ACD+DCE=180°

∴∠ACB+   +   =180°(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5).问:

(1)当购买乒乓球x盒时,两种优惠办法各应付款多少元?(用含x的代数式表示)

(2)如果要购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?

查看答案和解析>>

同步练习册答案