分析 ①方程组利用代入消元法求出解即可;
②方程组利用加减消元法求出解即可;
③方程组利用加减消元法求出解即可.
解答 解:①$\left\{\begin{array}{l}{x=y+2①}\\{x+3y=10②}\end{array}\right.$,
把①代入②得:y+2+3y=10,
解得:y=2,
把y=2代入①得:x=4,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$;
②$\left\{\begin{array}{l}{3x-2y=5①}\\{3x+y=11②}\end{array}\right.$,
①-②得:-3y=-6,即y=2,
把y=2代入①得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
③$\left\{\begin{array}{l}{x-2y=6①}\\{3x+y=4②}\end{array}\right.$,
①+②×2得:7x=14,即x=2,
把x=2代入①得:y=-2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8a-4b+12=4(2a-b+3) | B. | 4a2+4a+1=(2a+1)2 | ||
| C. | m2-n2=(m+n)(m-n) | D. | x2+y2=(x+y)2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com