精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,过点B60)的直线AB与直线OA相交于点A42),动点N沿路线O→A→C运动.

1)求直线AB的解析式.

2)求OAC的面积.

3)当ONC的面积是OAC面积的时,求出这时点N的坐标.

【答案】1y=-x+6;(212;(3.

【解析】

1)利用待定系数法,即可求得函数的解析式;

2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;

3)当ONC的面积是OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.

1)设直线AB的函数解析式是y=kx+b

根据题意得:,解得:

∴直线AB的解析式是:y=-x+6

2)在y=-x+6中,令x=0,解得:y=6

3)设直线OA的解析式y=mx,把A42)代入y=mx,得:4m=2

解得:,即直线OA的解析式是:

ONC的面积是OAC面积的

∴点N的横坐标是

当点NOA上时,x=1,y=,即N的坐标为(1,),

当点NAC上时,x=1,y=5,N的坐标为(1,5),

综上所述,.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两地相距30千米,甲骑自行车从地出发前往地,乙在甲出发1小时后骑摩托车从地前往地,图中的线段和线段分别反映了甲和乙所行使的路程(千米)与行使时间(小时)的函数关系。

请根据图像所提供的信息回答问题:

(1)乙骑摩托车的速度是每小时20 千米;
(2)两人的相遇地点与B地之间的距离是 千米;

3)求出甲所行使的路程(千米)与行使时间(小时)的函数关系式,并写出的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):

(1)请根据所提供的信息补全频数分布直方图;

(2)样本的中位数落在   (身高值)段中;

(3)如果该校七年级共有500名学生,那么估计全校身高在160cm160cm以上的七年级学生有   人;

(4)如果上述七年级样本的平均数为157cm,方差为0.8;该校八年级学生身高的平均数为159cm,方差为0.6,那么   学生的身高比较整齐.(填七年级八年级”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为

求这矩形仓库的长;

有规格为(单位:)的地板砖单价分别为/块和/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点PPD⊥AB于点D,以AP、AD为邻边作PADE.设□PADE△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).

(1)求线段PE的长(用含x的代数式表示).

(2)当点E落在边BC上时,求x的值.

(3)求yx之间的函数关系式.

(4)直接写出点E△ABC任意两边所在直线距离相等时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF

1)说明BE=CF的理由;

2)如果AB=5AC=3,求AEBE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解答下列问题:

在形如ab=N的式子中,我们已经研究过两种情况:

①已知ab,求N,这是乘方运算;

②已知bN,求a,这是开方运算.

现在我们研究第三种情况:已知aN,求b,我们把这种运算叫作对数运算.

定义:如果ab=N(a>0.a≠1,N>0),则b叫作以a为底的N的对数,记作b=logaN.

例如:因为23=8,所以log28=3;因为,所以

(1)根据定义计算:

log381=   log33=   

log31=   ④如果logx16=4,那么x=   

(2)设ax=M,ay=N,则logaN=y(a>0,a≠1,M、N均为正数).用logaM,logaN的代数式分别表示logaMN,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=与一次函数y=x+b的图象交于A(1,-k+4),B(k-4,-1)两点.

(1)试确定这两个函数的表达式;

(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.

查看答案和解析>>

同步练习册答案