分析 (1)求出∠DAC=∠BAE,根据SAS得出△DAC≌△BAE,即可得出结论;
(2)根据全等三角形的性质得出两三角形面积相等和DC=BE,根据面积公式求出AM=AN,根据角平分线的判定方法即可得出结论.
解答 (1)证明:∵∠BAD=∠CAE=90°,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,
又AD=AB,AC=AE,
∴△DAC≌△BAE(SAS),
∴DC=BE.
(2)解:∠AFD=∠AFE,
理由如下:
过A作AM⊥DC于M,AN⊥BE于N,如图所示:
∵△DAC≌△BAE,
∴S△ACD=S△ABE,DC=BE,
∴$\frac{1}{2}$DC×AM=$\frac{1}{2}$BE×AN,
∴AM=AN,
∴点A在∠DFE的平分线上,
∴∠AFD=∠AFE.
点评 本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△ACD≌△AEB,注意:到角两边距离相等的点在角的平分线上.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{a}$+$\frac{2}{b}$=$\frac{4}{a+b}$ | B. | $\frac{3}{k+3}$=$\frac{1}{k}$ | ||
| C. | ($\frac{m}{{n}^{2}}$)2=$\frac{{m}^{2}}{{n}^{2}}$ | D. | $\frac{0.2x+y}{3x-0.4y}$=$\frac{x+5y}{15x-2y}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2cm | B. | 3cm | C. | 4cm | D. | 5cm |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com