精英家教网 > 初中数学 > 题目详情

已知二次函数y=-x2+mx+n,当x=3时,有最大值4.
(1)求m、n的值.
(2)设这个二次函数的图象与x轴的交点是A、B,求A、B点的坐标;
(3)当y<0时,求x轴的取值范围;
(4)有一圆经过点A、B,且与y轴的正半轴相切于点C,求C点的坐标.

解:(1)可得二次函数解析式为:
y=-(x-3)2+4=-x2+6x-5,
所以可得:m=6,n=-5;

(2)当y=0时有:-x2+6x-5=0,
(x-5)(x-1)=0,
解得:x=1或x=5,
所以可得A、B两点的坐标为:(1,0),(5,0);

(3)∵y=-x2+6x-5,
∴开口向下,
∵与x轴的交于点:(1,0),(5,0),
∴当y<0时,x<1或x>5;

(4)设点C的坐标为(0,b) 且b>0 则有:圆心O坐标为(r,b),
因圆与y轴相切,所以r为圆半径.
又圆经过A,B两点,则过圆心作直线垂直于A,B,垂线必交于AB的中点,即(3,0),
所以可得:r=3,
因此可得圆的方程为:(x-3)2+(y-b)2=32
将(1,0)代入方程得:4+b2=9,
解得:b=或 b=-(舍去).
所以点C的坐标为:(0,
分析:(1)由已知条件可设二次函数的顶点式为y=-(x-3)2+4,展开后比较即可求出m、n的值;
(2)解方程x2+6x-5=0,即可求出这个二次函数的图象与x轴的交点的横坐标;
(3)根据二次函数y=-x2+6x-5的开口方向及与x轴的交点坐标,即可得出y<0时,x的取值范围;
(4)设点C的坐标为(0,b)且b>0,则圆心的坐标为(r,b),由切线的性质得出r为圆的半径,根据垂径定理得出r=3,进而得到圆的方程为:(x-3)2+(y-b)2=32,然后将(1,0)代入方程得:4+b2=9,解方程即可求出b的值.
点评:本题考查了二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线的性质,二次函数与一元二次方程、一元二次不等式的关系,垂径定理,圆的方程,综合性较强,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案