【题目】如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.
(1)求点C的坐标;
(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.
【答案】(1)(5,﹣3);(2)点P的坐标为(﹣,12)或(,﹣8).
【解析】
试题分析:(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);
(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标yP=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为yP=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).
解:(1)∵点B的坐标为(0,﹣3),
∴点C的纵坐标为﹣3,
把y=﹣3代入y=﹣得,﹣3=﹣
解得x=5,
∴点C的坐标为(5,﹣3);
(2)∵C(5,﹣3),
∴BC=5,
∵四边形ABCD是正方形,
∴AD=5,
设点P到AD的距离为h.
∵S△PAD=S正方形ABCD,
∴×5×h=52,
解得h=10,
①当点P在第二象限时,yP=h+2=12,
此时,xP==﹣,
∴点P的坐标为(﹣,12),
②当点P在第四象限时,yP=﹣(h﹣2)=﹣8,
此时,xP==,
∴点P的坐标为(,﹣8).
综上所述,点P的坐标为(﹣,12)或(,﹣8).
科目:初中数学 来源: 题型:
【题目】填幻方:将1、2、3、4、5、6、7、8、9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字2、4固定在图中所示的位置时,按规则填写空格,所有可能出现的结果有( )
A.4种B.6种C.8种D.9种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C、D是圆上两点,且OD∥AC,OD与BC交于点E.
(1)求证:E为BC的中点;
(2)若BC=8,DE=3,求AB的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】前年甲厂全年的产值比乙厂多12万元,在其后的两年内,两个厂的产值都有所增加:甲厂每年的产值比上一年递增10万元,而乙厂每年的产值比上一年增加相同的百分数.去年甲厂全年的产值仍比乙厂多6万元,而今年甲厂全年产值反而比乙厂少3.2万元.前年甲乙两车全年的产值分别是多少?乙厂每年的产值递增的百分数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(0,-3),B(3,-2),C(2,-4).
(1)在图中作出△ABC关于x轴对称的△A1B1C1.
(2)点C1的坐标为: .
(3)△ABC的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解
在平面直角坐标系中,两条直线,
①当时,,且;②当时,.
类比应用
(1)已知直线,若直线与直线平行,且经过点,试求直线的表达式;
拓展提升
(2)如图,在平面直角坐标系中,的顶点坐标分别为:,试求出边上的高所在直线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴交于 A、B 两点,与 y 轴交于点 C,且对称轴为直线 x=1, 点 B 的坐标为(-1,0).则下面的五个结论:①2a+b=0;②abc>0;③当 y<0 时,x<-1 或 x>2;④c<4b;⑤ a+b>m(am+b)(m≠1),其中正确的个数是( )
A. 2 个 B. 3个 C. 4 个 D. 5 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com