精英家教网 > 初中数学 > 题目详情
(2010•绵阳)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=( )

A.1:2
B.1:3
C.2:3
D.11:20
【答案】分析:根据梯形的性质容易证明△AOD∽△COB,然后利用相似三角形的性质即可得到DO:BO的值,再利用G是BD的中点即可求出题目的结果.
解答:解:∵四边形ABCD是梯形,
∴AD∥CB,
∴△AOD∽△COB,
∴DO:BO=AD:BC=3:9,
∴DO=BD,BO=BD,
∵G是BD的中点,
∴BG=GD=BD,
∴GO=DG-OD=BD-BD=BD,
∴GO:BG=1:2.
故选A.
点评:此题主要考查了梯形的性质,利用梯形的上下底平行得到三角形相似,然后用相似三角形的性质解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:2011年3月浙江省宁波市七中九年级月考数学试卷(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《反比例函数》(05)(解析版) 题型:解答题

(2010•绵阳)如图,已知正比例函数y=ax(a≠0)的图象与反比例函致(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源:2010年四川省绵阳市中考数学试卷(解析版) 题型:解答题

(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案