精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.
(1)求出双曲线的解析式;
(2)连结CD,求四边形OCDB的面积.

【答案】
(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,

∴∠AMO=∠CEO=∠DFB=90°,

∵直线OA:y=x和直线AB:y=﹣x+10,

∴∠AOB=∠ABO=45°,

∴△CEO∽△DEB

= =3,

设D(10﹣m,m),其中m>0,

∴C(3m,3m),

∵点C、D在双曲线上,

∴9m2=m(10﹣m),

解得:m=1或m=0(舍去)

∴C(3,3),

∴k=9,

∴双曲线y= (x>0)


(2)解:由(1)可知D(9,1),C(3,3),B(10,0),

∴OE=3,EF=6,DF=1,BF=1,

∴S四边形OCDB=SOCE+S梯形CDFE+SDFB

= ×3×3+ ×(1+3)×6+ ×1×1=17,

∴四边形OCDB的面积是17


【解析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点P是等边△ABC内一点,PA=3,PB=4,PC=5,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x( h),货车的路程为y1( km),小轿车的路程为y2( km ),图中的线段OA与折线OBCD分别表示y1,y2x之间的函数关系.

(1)甲乙两地相距_____km,m=_____

(2)求线段CD所在直线的函数表达式;

(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线ABCD相交于点OAOEDOF=90°,OP是∠BOC的平分线AOD=40°.

(1)求∠EOP的度数;

(2)写出∠AOD的补角和余角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(-15)÷(-3);

(2)(-12)÷(-);

(3)(-0.75)÷0.25;

(4)(-12)÷(-)÷(-100).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知线段ABCD的公共部分BD=AB= CD线段ABCD的中点EF之间距离是10cmABCD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.

(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:线段AB=20cm.

(1)如图1,点P沿线段ABA点向B点以2厘米/秒运动,点P出发2秒后,Q沿线段BAB点向A点以3厘米/秒运动,问再经过几秒后P、Q相距5cm?

(2)如图2:AO=4厘米,PO=2厘米POB=60°,点P绕着点O60°/秒的速度时针旋转一周停止,同时点Q沿直线BAB点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.

查看答案和解析>>

同步练习册答案