精英家教网 > 初中数学 > 题目详情

【题目】将连续的奇数13579,…排成如图所示的数表.

1)探索任意一个十字形框中的五个数之和与中间的数的关系是   

2)若十字框中的五数之和是2015,请求出此时框中的五个数分别是什么?

【答案】1)五个数之和为中间数的5倍;(2)五个数分别为393401403405413

【解析】

1)设中间的数为x,表示出一个十字形框中的五个数之和,即可得到结果;

2)根据(1)表示的五个数之和,求出x的值,即可确定出所求.

解:(1)设中间是数为x,其余数为x10x+10x2x+2

五个数之和为x10+x+10+x2+x+2+x5x

则任意一个十字形框中的五个数之和与中间的数的关系是:五个数之和为中间数的5倍;

故答案为:五个数之和为中间数的5倍;

2)根据(1)得:5x2015

解得:x403

x10393x+10413x2401x+2405

则五个数分别为393401403405413

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC

⑴求∠ECD的度数;

⑵若CE=5,求CB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图所示,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD,其中正确的有( )

A. 3个 B. 4个 C. 5个 D. 6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在Rt△ABC中,∠ACB=90°,AB=6,过点C的直线MN∥AB,DAB上一点,过点DDE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,

(1)当点DAB的中点时,四边形BECD是什么特殊四边形?说明你的理由

(2)在(1)的条件下,当∠A=   时四边形BECD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发商的经适房的三个居民小区ABC在同一条直线上,位置如图所示.其中小区B到小区AC的距离分别是70m150m,现在想在小区AC之间建立一个超市,要求各小区居民到超市总路程的和最小,那么超市的位置应建在(  )

A.小区AB.小区BC.小区CD.AC的中点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O.过点CBD的平行线,过点DAC的平行线,两直线相交于点E.

(1)求证:四边形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201966日,工信部正式向四家电信企业发放商用牌照,标志着元年开始华为公司作为行业的领军者,已经具备从芯片、产品到系统组网的世界领先的技术,是全球唯一一家能够提供端到端商用解决方案的通讯企业为了了解某中学生对通讯技术的了解情况,随机抽取部分学生进行问卷,将结果分成“非常了解”“比较了解”、“一般了解”、“不了解”四种类型,分别记为,根据调查结果给制了如下尚不完整的两个统计图

1)本次问卷共随机调查了 名学生,在扇形统计图中_ _,“”所在扇形的圆心角的度数为 度;

2)请根据数据信息补全条形统计图;

3)若该校有名学生,估计选择“非常了解”、“比较了解”的学生共约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在十一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510.


普通间(元//天)

豪华间(元//天)

贵宾间(元//天)

三人间

50

100

500

双人间

70

150

800

单人间

100

200

1500

1)三人间、双人间普通客房各住了多少间?

2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出yx的函数关系式;

3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?

查看答案和解析>>

同步练习册答案