【题目】如图,在中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB.分别交AC、BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.
(1)求证:四边形AEPQ为菱形:
(2)当点P在线段EF上的什么位置时,菱形AEPQ的面积为四边形EFBQ面积的一半?请说明理
【答案】(1)见解析;(2)P为EF中点时,S菱形AEPQ=12S四边形EFBQ,理由见解析.
【解析】
(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EPA,得出AE=EP,即可得出结论;
(2)S菱形AEPQ=EPh,S平行四边形EFBQ=EFh,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.
(1)证明:∵EF∥AB,PQ∥AC,
∴四边形AEPQ为平行四边形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∴EA=EP,
∴四边形AEPQ为菱形.
(2)P为EF中点时,S菱形AEPQ=S四边形EFBQ
∵四边形AEPQ为菱形,
∴AD⊥EQ,
∵AD⊥BC,
∴EQ∥BC,
又∵EF∥AB,
∴四边形EFBQ为平行四边形.
作EN⊥AB于N,如图所示:
则S菱形AEPQ=EPEN=EFEN=S四边形EFBQ
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩(分) | 频数(人数) | 频率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中a= ,b= ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知中,厘米,、分别从点、点同时出发,沿三角形的边运动,已知点的速度是1厘米/秒的速度,点的速度是2厘米/秒,当点第一次到达点时,、同时停止运动.
(1)、同时运动几秒后,、两点重合?
(2)、同时运动几秒后,可得等边三角形?
(3)、在边上运动时,能否得到以为底边的等腰,如果存在,请求出此时、运动的时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象过两点.
(1)求直线的函数表达式
(2)直线交轴于点为直线上一动点
①求的最小值;
②是直线上任意一点,为直线上另一动点,若是以为直角边长的等腰直角三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )
A.①②④ B.③④ C.①③④ D.①②
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com