【题目】已知关于的一元二次方程有两个实数根.
若为正整数,求此方程的根.
设此方程的两个实数根为、,若,求的取值范围.
【答案】 . 的取值范围为.
【解析】
(1)一元二次方程有两个实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围后,再取正整数;
(2)由根与系数的关系可得,把b代入方程得.∴y=ab﹣2b2+2b+1=ab﹣2(b2﹣b)+1==.再由m的取值范围确定y的取值范围.
(1)∵一元二次方程有两个实数根,∴△=≥0,∴m≤1.
∵m为正整数,∴m=1.
当m=1时,此方程为,∴此方程的根为.
(2)∵此方程的两个实数根为a、b,∴,∴y=ab﹣2b2+2b+1=ab﹣2(b2﹣b)+1==.
解法一:∵m=(y﹣1).
又∵m≤1,∴m=(y﹣1)≤1,∴y的取值范围为y≤.
解法二:
∵m≤1,∴≤,∴≤,∴y的取值范围为y≤.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
(1)求证:四边形OCAD是平行四边形;
(2)填空:①当∠B= 时,四边形OCAD是菱形;
②当∠B= 时,AD与相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .
(2)探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.
(3)拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB.分别交AC、BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.
(1)求证:四边形AEPQ为菱形:
(2)当点P在线段EF上的什么位置时,菱形AEPQ的面积为四边形EFBQ面积的一半?请说明理
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E,且点D为BC的中点.
(1)求证:△ABC为等边三角形;
(2)求DE的长;
(3)在线段AB的延长线上是否存在一点P,使△PBD≌△AED?若存在,请求出PB的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
(1)求抛物线C1的表达式;
(2)直接用含t的代数式表示线段MN的长;
(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com