【题目】抛物线y=﹣x2+mx+n与x轴的一个交点为(﹣1,0),对称轴是直线x=1,
(1)抛物线与x轴的另一个交点坐标为 ;m= ,n= .
(2)画出此二次函数的图象;
(3)利用图象回答:当x取何值时,y≤0?
【答案】(1)(3,0),m=2,n=3;(2)图象见解析;(3)当x≤﹣1或x≥3时y≤0.
【解析】
(1)根据二次函数的对称性求得另一个交点,然后根据待定系数法即可求得m、n的值;(2)求得顶点,画出图象即可;(3)观察图形可直接得出y0时,x的取值范围;
解:
(1)∵抛物线y=﹣x2+mx+n与x轴的一个交点为(﹣1,0),对称轴是直线x=1,
∴抛物线与x轴另一个交点坐标为(3,0),
把(﹣1,0),(3,0)代入y=﹣x2+mx+n得,
解得,
故答案为(3,0),m=2,n=3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点为(1,4);
画出此图象如图:
(3)由图象可知:当x≤﹣1或x≥3时y≤0.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,外心为O,BC=10,∠BAC=60°,分别以AB,AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE,CD交于点P,则OP的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,其对称轴与抛物线相交于点M,与x轴相交于点N,点P是线段MN上的一个动点,连接CP,过点P作PE⊥CP交x轴于点E.
(1)求抛物线的顶点M的坐标;
(2)当点E与原点O的重合时,求点P的坐标;
(3)求动点E到抛物线对称轴的最大距离是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=8,O是AC的中点,把Rt△ABC绕着点O旋转得到Rt△A'B'C',使得点C的对应点C'恰好落在AB上,则C,C'两点间的距离是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△OAB中,∠OAB=90°,OA=AB=5,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.
(1)线段OA1的长是 ,∠AOB1的度数是 ;
(2)连接AA1,求证:四边形OAA1B1是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,用篱笆靠墙围成矩形花围ABCD,墙可利用的最大长度为15米,一面利用旧墙,其余三面用篱笆围成,篱笆总长为24米.
(1)若围成的花圃面积为40米2时,求BC的长;
(2)如图2若计划在花圃中间用一道隔成两个小矩形,且围成的花圃面积为50米2,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高AB.
(结果精确到1m,参考数据:≈1.4,≈1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:
(1)求反比例函数的表达式;
(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com