精英家教网 > 初中数学 > 题目详情
将抛物线先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为( )
A.B.
C.D.
A.

试题分析:按照“左加右减,上加下减”的规律.y=3x2向上平移3个单位,再向左平移2个单位得y=3(x+2)2+3.故选A.
考点: 二次函数图像的几何变换.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与y轴交于点A,抛物线上的一点P在第四象限,连接AP与x轴交于点C,,且S△AOC=1,过点P作PB⊥y轴于点B.

(1)求BP的长;
(2)求抛物线与x轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3(x-2)2+1图象上平移2个单位,再向左平移2个单位所得的解析式为 (    )
A.y=3x2+3B.y=3x2-1 C.y=3(x-4)2+3D.y=3(x-4)2-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

永嘉县绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我县收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴交于点A(-1,0)、B(3,0),与轴交于点C(0,3).

(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为          时,四边形FQAC是平行四边形;当点F的坐标为           时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线向下平移2个单位再向右平移3个单位,所得抛物线的表达式是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t=      ;当0<x≤4时, y2与x的函数关系为y2      ;当      ≤x<      时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为(    )
A.x1<x2<a<bB.x1<a<x2<bC.x1<a<b<x2D.a<x1<b<x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案