分析 (1)先把A点坐标代入 y1=$\frac{m}{x}$求出m,从而得到反比例函数解析式;再把A点和C点坐标分别代入y2=kx+b得关于k、b的方程组,然后解方程组求出k和b,于是可得到一次函数解析式;
(2)根据反比例函数与一次函数的交点问题,通过方程组$\left\{\begin{array}{l}{y=\frac{3}{2}x+4}\\{y=-\frac{2}{x}}\end{array}\right.$得B(-$\frac{2}{3}$,3),然后根据函数图象,找出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.
解答 解:(1)把A(-2,1)代入 y1=$\frac{m}{x}$得m=-2×1=-2,所以反比例函数解析式为y1=-$\frac{2}{x}$;
把A(-2,1)、C(0,4)分别代入y2=kx+b得$\left\{\begin{array}{l}{-2k+b=1}\\{b=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=\frac{3}{2}}\\{b=4}\end{array}\right.$,
所以一次函数解析式为y2=$\frac{3}{2}$x+4;
(2)解方程组$\left\{\begin{array}{l}{y=\frac{3}{2}x+4}\\{y=-\frac{2}{x}}\end{array}\right.$得$\left\{\begin{array}{l}{x=-\frac{2}{3}}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$,则B(-$\frac{2}{3}$,3),
所以当x<-2或-$\frac{2}{3}$<x<0时,反比例函数值大于一次函数值.
点评 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 时间/分 | 0 | 2 | 4 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 24 |
| 速度/(千米/时) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com