已知二次函数y=a(x-m)2-2a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.
(1)见解析;(2).
解析试题分析:(1)二次函数和x轴有两个交点,判别式>0即可;
(2)先求出顶点坐标,由△ABC是等腰直角三角形,可以得出AB边上高等于1,即可得出a的值.
试题解析:
(1)证明:y=a(x-m)2-2a(x-m)=ax2-(2am+2a)x+am2+2am
当a≠0时,=(2am+2a)2-4a(am2+2am)
∵
∴
∴不论a与m为何值,该函数的图象与x轴总有两个公共点.
(2)y=a(x-m)2-2a(x-m)=a(x-m-1)2-a
∴C(m+1,-a)
当y=0时,
解得x1=m,x2=m+2.
∴AB=(m+2)-m=2.
当△ABC是等腰直角三角形时,可求出AB边上高等于1.
∴.
∴.
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个定价增加元,此时的销售量是多少?(用含的代数式表示)
(2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?
(3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+c与x轴交于点A、B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC.
(1)求此抛物线的解析式;
(2)若点P是线段BC上的一个动点,过点P作y轴的平行线与抛物线在x轴下方交于点Q,试问线段PQ的长度是否存在最大值?若存在,求出其最大值;若不存在,请说明理由;
(3)若此抛物线的对称轴上的点M满足∠AMC=45°,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设该旗舰店每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要 元?
(成本=进价×销售量)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.
(1)求b,c的值.
(2)结合函数的图象探索:当y>0时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).
(1)试写出y与x之间的函数关系式(不写x的取值范围);
(2)试写出z与x之间的函数关系式(不写x的取值范围);
(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,二次函数的图象与一次函数的图象交于,两点. C为二次函数图象的顶点.
(1)求二次函数的解析式;
(2)定义函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1≠y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1(或y2).” 当直线(k >0)与函数f的图象只有两个交点时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线与x轴、y轴分别交于点A、C,经过A、C两点的抛物线与x轴的负半轴上另一交点为B,且tan∠CBO=3.
(1)求该抛物线的解析式及抛物线的顶点D的坐标;
(2)若点P是射线BD上一点,且以点P、A、B为顶点的三角形与△ABC相似,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com