精英家教网 > 初中数学 > 题目详情
7.如图,点A,B,C,D为⊙O上的四个点,$\widehat{BC}$=$\widehat{CD}$,AC交BD于点E,CE=4,CD=6.
(1)求证:△CDE∽△CAD;
(2)求AE的长.

分析 (1)根据已知条件和圆周角定理得到∠BAC=∠CAD=∠CDE,由于∠ACD=∠DCE,即可得到结论;
(2)根据相似三角形的性质对应边成比例可求得AC,进一步可求得AE.

解答 解:∵$\widehat{BC}$=$\widehat{CD}$,
∴∠BAC=∠CAD=∠CDE,
∵∠ACD=∠DCE,
∴△CDE∽△CAD,

(2)∵△CDE∽△CAD,∴$\frac{CE}{CD}=\frac{CD}{CA}$,即$\frac{4}{6}=\frac{6}{AC}$,
解得CA=9,
∴AE=AC-CE=9-4=5.

点评 本题主要考查相似三角形的判定和性质,利用条件证明△CDE∽△CAD从而利用对应边成比例求得AC的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.已知抛物线y=2x2+bx+c与直线y=-1只有一个公共点,且经过A(m-1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为22.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.一次函数y=-$\frac{1}{2}$kx-2k的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠ACB=90°,以BC为直径作圆O,交斜边AB于E,D是AC的中点,连接DE.
(1)求证:DE是圆O的切线;
(2)DE=2,AE=$\frac{16}{5}$.求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知点A(1,2)是函数y=$\frac{2}{x}$(x>0)的图象上的点,连接0A作0A⊥0B,与图象y=$\frac{-6}{x}$(x>0)交于点B.
(1)求点B的坐标;
(2)求OA:OB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.BC是半圆⊙A的直径,点D,E是圆上两点,并且∠DAE是直角,点F是弦CD、BE的交点.
(1)△EFC是什么三角形?
(2)如果AF∥CE,求DC:DB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算正确的是(  )
A.-a4a3=a7B.(-a)4a3=a12C.(a43=a12D.a4+a3=a7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.(1)先化简,再求值:$\frac{1}{x}$÷($\frac{{x}^{2}+1}{{x}^{2}-x}$-$\frac{2}{x-1}$)+$\frac{1}{x+1}$,其中x=2-1-20160
(2)阅读理解
【提出问题】已知$\frac{x}{4}$=$\frac{y}{3}$=$\frac{z}{2}$=k,求分式$\frac{{x}^{2}+{y}^{2}}{xy-yz}$的值.
【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.
【解决问题】设$\frac{x}{4}$=$\frac{y}{3}$=$\frac{z}{2}$=k,则x=4k,y=3k,z=2k,将它们分别代入$\frac{{x}^{2}+{y}^{2}}{xy-xz}$中并化简,可得分式$\frac{{x}^{2}+{y}^{2}}{xy-xz}$的值为$\frac{25}{4}$.
【拓展应用】已知$\frac{x}{3}$=-$\frac{y}{2}$=$\frac{z}{4}$,求分式$\frac{{x}^{2}-2xy+{y}^{2}}{{y}^{2}+4yz+4{z}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在-1,0,$\frac{1}{3}$,$\sqrt{2}$,$\frac{π}{2}$,0.101001…中任取一个数,取到无理数的概率是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案